【題目】某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買臺(tái)機(jī)器人的總成本萬元.

1)若使每臺(tái)機(jī)器人的平均成本最低,問應(yīng)買多少臺(tái)?

2)現(xiàn)按(1)中的數(shù)量購買機(jī)器人,需要安排人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀,經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少多少?

【答案】1300臺(tái)(290

【解析】

1)由總成本萬元,可得每臺(tái)機(jī)器人的平均成本,然后利用基本不等式求最值;

2)引進(jìn)機(jī)器人后,每臺(tái)機(jī)器人的日平均分揀量,分段求出300臺(tái)機(jī)器人的日平均分揀量的最大值及所用人數(shù),再由最大值除以1200,可得分揀量達(dá)最大值時(shí)所需傳統(tǒng)分揀需要人數(shù),則答案可求.

解:(1)由總成本,可得

每臺(tái)機(jī)器人的平均成本,

當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,

∴若使每臺(tái)機(jī)器人的平均成本最低,則應(yīng)買300臺(tái);

2)引進(jìn)機(jī)器人后,每臺(tái)機(jī)器人的日平均分揀量,

當(dāng)時(shí),300臺(tái)機(jī)器人的日平均分揀量為,

∴當(dāng)時(shí),日平均分揀量有最大值144000;

當(dāng)時(shí),日平均分揀量為,

300臺(tái)機(jī)器人的日平均分揀量的最大值為144000件.

若傳統(tǒng)人工分揀144000件,則需要人數(shù)為(人).

∴日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市正在進(jìn)行創(chuàng)建全國(guó)文明城市的復(fù)驗(yàn)工作,為了解市民對(duì)“創(chuàng)建全國(guó)文明城市”的知識(shí)知曉程度,某權(quán)威調(diào)查機(jī)構(gòu)對(duì)市民進(jìn)行隨機(jī)調(diào)查,并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),共分為優(yōu)秀和一般兩類,先從結(jié)果中隨機(jī)抽取100份,統(tǒng)計(jì)得出如下列聯(lián)表:

優(yōu)秀

一般

總計(jì)

25

25

50

30

20

50

總計(jì)

55

45

100

1)根據(jù)上述列聯(lián)表,是否有的把握認(rèn)為“創(chuàng)城知識(shí)的知曉程度是否為優(yōu)秀與性別有關(guān)”?

2)現(xiàn)從調(diào)查結(jié)果為一般的市民中,按分層抽樣的方法從中抽取9人,然后再從這9人中隨機(jī)抽取3人,求這三位市民中男女都有的概率;

3)以樣本估計(jì)總體,視樣本頻率為概率,從全市市民中隨機(jī)抽取10人,用表示這10人中優(yōu)秀的人數(shù),求隨機(jī)變量的期望和方差.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)坐標(biāo)為,分別是橢圓的左,右頂點(diǎn),是橢圓上異于,的一點(diǎn),且,所在直線斜率之積為.

1)求橢圓的方程;

2)過點(diǎn)作兩條直線,分別交橢圓,兩點(diǎn)(異于點(diǎn)).當(dāng)直線,的斜率之和為定值時(shí),直線是否恒過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)+”時(shí)代的今天,移動(dòng)互聯(lián)快速發(fā)展,智能手機(jī)(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價(jià)格卻不斷下降,遠(yuǎn)低于蘋果;智能手機(jī)成為了生活中必不可少的工具,學(xué)生是對(duì)新事物和新潮流反應(yīng)最快的一個(gè)群體之一,越來越多的學(xué)生在學(xué)校里使用手機(jī),為了解手機(jī)在學(xué)生中的使用情況,對(duì)某學(xué)校高二年級(jí)名同學(xué)使用手機(jī)的情況進(jìn)行調(diào)查,針對(duì)調(diào)查中獲得的每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)的時(shí)間進(jìn)行分組整理得到如下的數(shù)據(jù):

使用時(shí)間(小時(shí))

1

2

3

4

5

6

7

所占比例

4%

10%

31%

16%

12%

2%

1)求表中的值;

2)從該學(xué)校隨機(jī)選取一名同學(xué),能否根據(jù)題目中所給信息估計(jì)出這名學(xué)生每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)小于小時(shí)的概率?若能,請(qǐng)算出這個(gè)概率;若不能,請(qǐng)說明理由;

3)若從使用手機(jī)小時(shí)和小時(shí)的兩組中任取兩人,調(diào)查問卷,看看他們對(duì)使用手機(jī)進(jìn)行娛樂活動(dòng)的看法,求這人都使用小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某區(qū)2018年房地產(chǎn)價(jià)格因棚戶區(qū)改造實(shí)行貨幣化補(bǔ)償,使房?jī)r(jià)快速走高,為抑制房?jī)r(jià)過快上漲,政府從20192月開始采用實(shí)物補(bǔ)償方式(以房換房),3月份開始房?jī)r(jià)得到很好的抑制,房?jī)r(jià)漸漸回落,以下是20192月后該區(qū)新建住宅銷售均價(jià)的數(shù)據(jù):

月份

3

4

5

6

7

價(jià)格(百元/平方米)

83

82

80

78

77

1)研究發(fā)現(xiàn),3月至7月的各月均價(jià)(百元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,求價(jià)格(百元/平方米)關(guān)于月份的線性回歸方程;

2)用表示用(1)中所求的線性回歸方程得到的與對(duì)應(yīng)的銷售均價(jià)的估計(jì)值,3月份至7月份銷售均價(jià)估計(jì)值與實(shí)際相應(yīng)月份銷售均價(jià)差的絕對(duì)值記為,即,.,則將銷售均價(jià)的數(shù)據(jù)稱為一個(gè)好數(shù)據(jù),現(xiàn)從5個(gè)銷售均價(jià)數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)均是好數(shù)據(jù)的概率.

參考公式:回歸方程系數(shù)公式,;參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,、、分別是線段、、的中點(diǎn),,,在線段上運(yùn)動(dòng),設(shè).

1)證明:;

2)是否存在點(diǎn),使得平面與平面所成的銳二面角的大小為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

表中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.

1)求一件手工藝品質(zhì)量為B級(jí)的概率;

2)若一件手工藝品質(zhì)量為A,BC級(jí)均可外銷,且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤(rùn)記為100.

①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;

②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是(

A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對(duì)立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

同步練習(xí)冊(cè)答案