若方程x3-x+1=0在區(qū)間(a,b)(a,b,∈Z,且b-a=1)上有一根,則a+b的值為(  )
A、-1B、-2C、-3D、-4
考點:二分法求方程的近似解
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=x3-x+1,由題意可得 f(x)在區(qū)間(a,b)上有一零點.再利用函數(shù)零點的判定定理求得f(x)在區(qū)間(-2,-1)有一零點,可得a和b的值,從而求得a+b的值.
解答: 解:令f(x)=x3-x+1,由題意可得 f(x)在區(qū)間(a,b)(a,b,∈Z,且b-a=1)上有一零點.
再根據(jù)f(-2)=-5<0,f(-1)=1>0,f(-2)f(-1)<0,
故 f(x)在區(qū)間(-2,-1)有一零點,可得a=-2、b=-1,∴a+b=-3,
故選:C.
點評:本題主要考查函數(shù)的零點的判定定理的應(yīng)用,根據(jù)函數(shù)的解析式求函數(shù)的值,判斷函數(shù)的零點所在的區(qū)間的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)上各點與焦點連線的中點的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足
a1=2
an=2+
2
an-1
,則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
)x2+1(x∈[-1,2])
的值域為(  )
A、[
1
32
,
1
4
]
B、(0,
1
4
]
C、[
1
32
,
1
2
]
D、[
1
4
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x
-6+2x的零點一定位于區(qū)間( 。
A、(3,4)
B、(2,3)
C、(1,2)
D、(5,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-
2
x
的零點所在的大致區(qū)間是( 。
A、(-4,-2)
B、(-2,-1)
C、(2,4)
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+3x2+3x的單調(diào)增區(qū)間為( 。
A、(-∞,+∞)
B、(-∞,-1)
C、(0,+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2),
b
=(-3,2),當k為何值時,k
a
+
b
a
-3
b
平行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,AA1=2AB,E,F(xiàn)分別是AA1,DD1的中點.
(Ⅰ)求證:B1C1∥平面EFC;
(Ⅱ)求證:C1F⊥平面EFC;
(Ⅲ)在棱BB1上是否存在一點P,使得平面ADP⊥平面EFC?若存在,求出
BP
BB1
的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案