如圖,在三棱柱ABC-A1B1C1中,四邊形AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)若點D是線段BC的中點,請問在線段AB1是否存在點E,使得DE∥面AA1C1C?若存在,請說明點E的位置,若不存在,請說明理由;
(Ⅲ)(本小問只理科學生做)求二面角C-A1B1-C1的大。
考點:用空間向量求平面間的夾角,直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關系與距離,空間角
分析:(Ⅰ)因為四邊形AA1C1C為正方形,所以AA1⊥AC.因為平面ABC⊥平面AA1C1C,利用面面垂直的性質;
(Ⅱ)當點E是線段AB1的中點時,有DE∥平面AA1C1C.證明時連結A1B交AB1于點E,連結DE,利用線面平行的判定定理.
(Ⅲ)推理∠C1A1C是二面角C-A1B1-C1的平面角.
解答: (本小題滿分12分)

解:(Ⅰ)因為四邊形AA1C1C為正方形,所以AA1⊥AC.
因為平面ABC⊥平面AA1C1C,
且平面ABC∩平面AA1C1C=AC,
所以AA1⊥平面ABC.…(4分)(文6分)
(Ⅱ)當點E是線段AB1的中點時,有DE∥平面AA1C1C.
證明:連結A1B交AB1于點E,連結DE.

因為點E是A1B中點,點D是線段BC的中點,
所以DE∥A1C.
又因為DE?平面AA1C1C,A1C?平面AA1C1C,
所以DE∥平面AA1C1C.…(8分)(文12分)
(Ⅲ)因為AA1⊥平面ABC,所以AA1⊥AB.
又因為AC⊥AB,所以AB⊥平面AA1C1C,
所以A1B1⊥平面AA1C1C,
所以A1B1⊥A1C1,A1B1⊥A1C,
所以∠C1A1C是二面角C-A1B1-C1的平面角.
易得tan∠C1A1C=
C1C
C1A1
=1,
所以二面角C-A1B1-C1的平面角為45°.…(12分)
點評:本題考查面面垂直,考查面面角,解題的關鍵是掌握面面垂直的判定,考查二面角的定義,解題時要認真審題,注意空間中平行與垂直的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x,直線l過點(0,1).
(1)若k=4,求拋物線到直線l距離最近的點的坐標;
(2)若直線l與拋物線C相交于A、B兩點,且OA⊥OB,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=a2x-2(a>0,a≠1)的圖象恒過點A,若直線l:mx+ny-1=0經過點A,則坐標原點O到直線l的距離的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α∈(0,
π
6
),比較tan(sinα),tan(tanα),tan(cosα)的大小
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|1<x<3},B={x|x≤2},則集合A∩B( 。
A、(0,1)
B、(0,2]
C、(1,2)
D、(1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),對于任意x∈R都有f(x+4)=f(x)+f(2)成立,當x1,x2∈[0,2]且x1≠x2時,都有
f(x1)-f(x2)
x1-x2
>0.給出下列命題:
①函數(shù)f(x)一定是周期函數(shù);
②函數(shù)f(x)在區(qū)間[-6,-4]上為增函數(shù);
③直線x=-4是函數(shù)f(x)圖象的一條對稱軸;
④函數(shù)f(x)在區(qū)間[-6,6]上有且僅有4個零點.
其中正確命題的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側面PAD⊥底面ABCD,且PA=PD=
2
2
AD,E、F分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)求證:面PAB⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中,正確的是(  )
A、棱柱的側面可以是三角形
B、棱柱的側面是平行四邊形,而底面不是平行四邊形
C、棱柱的各條棱都相等
D、正方體和長方體都是特殊的四棱柱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga[(
1
a
-2)x+1],(a>0且a≠1,a是參數(shù)).
(1)求f(x)的定義域;
(2)當x∈[1,2]時,f(x)>0恒成立;求a的取值范圍.

查看答案和解析>>

同步練習冊答案