某展覽館22天中每天進(jìn)館參觀的人數(shù)如下:
180158170185189180184185140179192
185190165182170190183175180185148
計(jì)算參觀人數(shù)的中位數(shù)、眾數(shù)、平均數(shù).
考點(diǎn):眾數(shù)、中位數(shù)、平均數(shù),極差、方差與標(biāo)準(zhǔn)差
專(zhuān)題:概率與統(tǒng)計(jì)
分析:把已知22個(gè)數(shù)據(jù)從小到大依次排列,由此能求出參觀人數(shù)的中位數(shù)、眾數(shù)、平均數(shù).
解答: 解:由已知得22個(gè)數(shù)據(jù)從小到大依次為:
140,148,158,165,170,170,175,179,180,180,180,
182,183,184,185,185,185,185,189,190,190,192,
中位數(shù)為:
1
2
(180+182)=181
;
眾數(shù)為:185,
平均數(shù)為:
.
x
=
1
22
(140+148+158+165+170+170+175+179+180+180+180
+182+183+184+185+185+185+185+189+190+190+192)=177.0445.
點(diǎn)評(píng):本題考查參觀人數(shù)的中位數(shù)、眾數(shù)、平均數(shù)的求法,是基礎(chǔ)題,解題時(shí)要注意計(jì)算公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在圓C:x2+y2=10內(nèi)隨機(jī)撒一粒豆子,則豆子落在陰影部分的概率是( 。
A、1-
2
B、
2
5
C、
4
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓方程
x2
a2
+
y2
b2
=1(a>b>0),A(m,0)為橢圓外一定點(diǎn),過(guò)A作直線l交橢圓于P、Q兩點(diǎn),且有|
AP
|
|
AQ
|
,Q關(guān)于x軸的對(duì)稱點(diǎn)為B,x軸上一點(diǎn)C,當(dāng)l變化時(shí),證明:點(diǎn)C在BP上的充要條件是C的坐標(biāo)為(
a2
m
,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果有下列這段偽代碼,那么將執(zhí)行多少次循環(huán)( 。
A、4次B、5次C、7次D、10次

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+1,x≤0
x2+ax,x>0
若f(f(0))≥a2-1,則實(shí)數(shù)a的取值范圍為(  )
A、[3,4]
B、[2,3]
C、[1,2]
D、[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品使用4個(gè)A配件耗時(shí)1h,每生產(chǎn)一件乙產(chǎn)品使用4個(gè)B配件耗時(shí)2h,該廠每天最多可以從配件廠獲得16個(gè)A配件和12個(gè)B配件,若生產(chǎn)一件甲產(chǎn)品獲利2萬(wàn)元,生產(chǎn)一件乙產(chǎn)品獲利3萬(wàn)元,按每天工作8h計(jì)算,怎么安排生產(chǎn)才能獲得最大利潤(rùn).
甲(件)乙(件)限額
A(個(gè))4個(gè)/件16個(gè)
B(個(gè))4個(gè)/件12個(gè)
耗時(shí)(h)1h/件2h/件8h
獲利(萬(wàn)元)2萬(wàn)元/件3萬(wàn)元/件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示四棱錐E-ABCD中,四邊形ABCD為正方形,AE⊥平面CDB,且AR=3,
AB=6.
(1)求證:AB⊥平面ADE;
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果命題“¬p或¬q”是真命題,且p為真命題,則q一定是
 
命題.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=4,an+1=3an-2(n∈N+
(1)求證:數(shù)列{an-1}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log3(a1-1)+log3(a2-1)+…+log3(an-1),求數(shù)列{
1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案