【題目】國(guó)內(nèi)某知名連鎖店分店開(kāi)張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效展開(kāi),參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該分店經(jīng)理對(duì)開(kāi)業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示開(kāi)業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
經(jīng)過(guò)進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程;
(2)若該分店此次抽獎(jiǎng)活動(dòng)自開(kāi)業(yè)始,持續(xù)10天,參加抽獎(jiǎng)的每位顧客抽到一等獎(jiǎng)(價(jià)值200元獎(jiǎng)品)的概率為,抽到二等獎(jiǎng)(價(jià)值100元獎(jiǎng)品)的概率為,抽到三等獎(jiǎng)(價(jià)值10元獎(jiǎng)品)的概率為,試估計(jì)該分店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)送出多少元獎(jiǎng)品?
參考公式:,
【答案】(1)(2)8800元
【解析】試題分析:(1)先求平均數(shù),代入公式求,利用求,即得線性回歸方程,(2)先利用線性回歸方程估計(jì)時(shí)參加抽獎(jiǎng)的人數(shù),得到此次抽獎(jiǎng)活動(dòng)總?cè)藬?shù);再利用數(shù)學(xué)期望公式求每位顧客抽獎(jiǎng)所獲獎(jiǎng)金數(shù),最后與總?cè)藬?shù)的積為此次抽獎(jiǎng)活動(dòng)總獎(jiǎng)金.
試題解析:(Ⅰ)依題意:,
,,,
,
則關(guān)于的線性回歸方程為.
(Ⅱ)參加抽獎(jiǎng)的每位顧客獲得獎(jiǎng)品金額為,的分布列為
(元).
由關(guān)于的回歸直線方程,預(yù)測(cè)時(shí),,時(shí),,時(shí),,則此次活動(dòng)參加抽獎(jiǎng)的人數(shù)約為人.
(元)
所以估計(jì)該分店為此次抽獎(jiǎng)活動(dòng)應(yīng)準(zhǔn)備8800元獎(jiǎng)品.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù),對(duì)于曲線上的兩個(gè)不同的點(diǎn), ,記直線的斜率為,若,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在周長(zhǎng)為12的菱形ABCD中,AE=1,AF=2,若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+FP的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1 , S2 , S3 , …,S10 , 則S1+S2+S3+…+S10=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時(shí)間銷售一種成本為10元/件的商品售后,經(jīng)過(guò)統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價(jià)m(元/件) | 當(dāng)1≤x≤20時(shí),m=20+ x |
當(dāng)21≤x≤30時(shí),m=10+ |
(1)請(qǐng)計(jì)算第幾天該商品單價(jià)為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù)(),記的導(dǎo)函數(shù)為.
(1)證明:當(dāng)時(shí),在上單調(diào)遞增;
(2)若在處取得極小值,求的取值范圍;
(3)設(shè)函數(shù)的定義域?yàn)?/span>,區(qū)間,若在上是單調(diào)函數(shù),
則稱在上廣義單調(diào).試證明函數(shù)在上廣義單調(diào).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com