下表給出了某校120名12歲男孩身高的資料
區(qū)間 122~126 126~130 130~134 134~138 138~142
人數(shù) 5 8 10 22 33
區(qū)間 142~146 146~150 150~154 154~158
人數(shù) 20 11 6 5
(1)畫出樣本的頻率分布直方圖.
(2)估計身高小于134的人數(shù)約占的百分?jǐn)?shù).
考點:頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)根據(jù)頻率分布表,求出各小組的頻率,畫出頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,計算身高小于134的人數(shù)所占的百分?jǐn)?shù).
解答: 解:(1)根據(jù)頻率分布表,求出各小組的頻率,如下;
122~126,
5
120
;126~130,
8
120
;130~134,
10
120
;134~138,
22
120
;138~142,
33
120
;
142~146,
20
120
;146~150,
11
120
;150~154,
6
120
;154~158,
5
120

畫出頻率分布直方圖,如圖
(2)根據(jù)頻率分布直方圖,得身高小于134的人數(shù)所占的百分?jǐn)?shù)是
5
120
+
8
120
+
10
120
=
23
120
≈20%
點評:本題考查了利用頻率分布表求各小組的頻率并畫出頻率分布直方圖以及利用頻率分布直方圖進(jìn)行簡單的計算問題,考查了一定的畫圖、識圖能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,復(fù)數(shù)z的共軛復(fù)數(shù)為
.
z
,且(
.
z
-1)(1+i)=2i,則復(fù)數(shù)z=( 。
A、2+iB、2-i
C、-2+iD、-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),且當(dāng)x=1時取得極值-2,
(1)當(dāng)x>0時,求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x4-2x2-3,對任意x∈[-
3
3
]都有f(x)≥g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=t,且an+1=2Sn+1,n∈N*
(Ⅰ)當(dāng)實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)bn=log3an+1,數(shù)列{
bn
an
}的前n項和Tn,證明Tn
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a3=7,a5+a7=26.
(1)求{an}的通項公式;
(2)若m=
2an
2n+2
,數(shù)列{bn}滿足關(guān)系式bn=
1,  n=1
bn-1+m,n≥2
,求證:數(shù)列{bn}的通項公式為bn=2n-1;
(3)設(shè)(2)中的數(shù)列{bn}的前n項和為Sn,對任意的正整數(shù)n,(1-n)•(Sn+n+2)+(n+p)•2n+1<2恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,π),sinα+cosα=
1
5
,求值:
(1)sinαcosα
(2)sinα-cosα
(3)tan(π-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,用四種不同顏色給三棱柱ABC-A1B1C1的六個頂點涂色,要求四種顏色全都用上,每個點涂一種顏色,且圖中每條線段的兩個端點涂不同顏色.則不同的涂色方法的種數(shù)為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|y=lg(1-x)},B={x||x|<a,a∈R},(∁uA)∩B=∅,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角三角形ABC中,C=90°,AC=6,BC=4.若點D滿足
AD
=-2
DB
,則|
CD
|=
 

查看答案和解析>>

同步練習(xí)冊答案