【題目】在正方體ABCDA1B1C1D1中,E,F分別為棱AA1CC1的中點,則在空間中與三條直線A1D1EF,CD都相交的直線(

A.不存在B.有且只有兩條C.有且只有三條D.有無數(shù)條

【答案】D

【解析】

上任意取一點,直線確定一個平面,

這個平面與有且僅有個交點,

取不同的位置就確定不同的平面,

從而與有不同的交點,

而直線與這條異面直線都有交點,如圖所示,故選D

【方法點晴】

本題主要考查了空間中點、線、面的位置關系,其中解答中涉及到立體幾何中空間直線相交問題、空間幾何體的結構特征、異面直線的概念等知識點的綜合考查,著重考查了學生分析問題和解答問題的能力,屬于基礎題,本題的解答中正確把握空間幾何體的結構特征是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知分別為的三內角A,B,C的對邊,其面積,在等差數(shù)列中,,公差.數(shù)列的前n項和為,且

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為Ⅰ)求曲線的直角坐標方程,并指出其表示何種曲線;(Ⅱ)設直線與曲線交于兩點,若點的直角坐標為,試求當時,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】哥德巴赫猜想是每個大于2的偶數(shù)可以表示為兩個素數(shù)的和,如,在不超過13的素數(shù)中,隨機選取兩個不同的數(shù),其和為偶數(shù)的概率是________(用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,討論函數(shù)的單調性;

(2)若函數(shù)有兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形,,,將沿對角線進行翻折,得到三棱錐,則在翻折的過程中,有下列結論:

①三棱錐的體積最大值為;

②三棱錐的外接球體積不變;

③三棱錐的體積最大值時,二面角的大小是;

④異面直線所成角的最大值為.

其中正確的是(

A.①②④B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某游戲廠商對新出品的一款游戲設定了“防沉迷系統(tǒng)”,規(guī)則如下:

①3小時以內(3小時)為健康時間,玩家在這段時間內獲得的累積經驗值單位:與游玩時間小時)滿足關系式:;

②35小時(5小時)為疲勞時間,玩家在這段時間內獲得的經驗值為即累積經驗值不變);

超過5小時為不健康時間,累積經驗值開始損失,損失的經驗值與不健康時間成正比例關系,比例系數(shù)為50.

時,寫出累積經驗值E與游玩時間t的函數(shù)關系式,并求出游玩6小時的累積經驗值;

該游戲廠商把累積經驗值E與游玩時間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時間內,這款游戲的“玩家愉悅指數(shù)”不低于24,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線,雙曲線的左、右焦點分別為F1,F2,M是雙曲線C2的一條漸近線上的點,且OM⊥MF2,O為坐標原點,若,且雙曲線C1,C2的離心率相同,則雙曲線C2的實軸長是 ( )

A. 32 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)對定義城內的每一個值,在其定義域內都存在唯一的,使得成立,則稱該函數(shù)為函數(shù)”.

(1)判斷函數(shù)是否為函數(shù),并說明理由;

(2)若函數(shù)在定義域上為函數(shù),求的取值范圍;

(3)已知函數(shù)在定義域上為函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案