【題目】已知分別為的三內(nèi)角A,B,C的對(duì)邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項(xiàng)和為,且

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前n項(xiàng)和

【答案】(1),;(2)

【解析】

(1)運(yùn)用三角形的面積公式和余弦定理,解得abc=2,由等差數(shù)列的通項(xiàng)公式可得an=2n;再由數(shù)列的通項(xiàng)與前n和的關(guān)系,可得數(shù)列{bn}為等比數(shù)列,求得bn;

(2)由(1)得,由此利用錯(cuò)位相減求和法能求出Tn

(1)SacsinBac,∴ac=4,

,,

,∴b=2,

從而,

故可得:,∴=2+2(n﹣1)=2n

,∴當(dāng)n=1時(shí),,

當(dāng)n≥2時(shí),,

兩式相減,得,(n≥2)

∴數(shù)列{}為等比數(shù)列,

(2)由(1)得,

++…+

=1×21+2×21+3×21+…+

∴2=1×22+2×23+3×24+…+n2n+1,

∴﹣=1×21+(22+23+…+2n)﹣n2n+1,

即:﹣=(1-n)2n+1-2,

=(n﹣1)2n+1+2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以橢圓)的右焦點(diǎn)為圓心,為半徑作圓(其中為已知橢圓的半焦距),過橢圓上一點(diǎn)作此圓的切線,切點(diǎn)為.

1)若,為橢圓的右頂點(diǎn),求切線長;

2)設(shè)圓軸的右交點(diǎn)為,過點(diǎn)作斜率為)的直線與橢圓相交于、兩點(diǎn),若恒成立,且.求:

(ⅰ)的取值范圍;

(ⅱ)直線被圓所截得弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的值域;

2)用表示實(shí)數(shù),的最大值,記函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列11,1,2,2,1,2,43,1,2,48,4,1,2,4,8,16,5,,其中第一項(xiàng)是,第二項(xiàng)是1,接著兩項(xiàng)為,,接著下一項(xiàng)是2,接著三項(xiàng)是,,,接著下一項(xiàng)是3,依此類推.記該數(shù)列的前項(xiàng)和為,則滿足的最小的正整數(shù)的值為(

A.65B.67C.75D.77

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對(duì)這四種干果進(jìn)行促銷:一次購買干果的總價(jià)達(dá)到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.

①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________

②在促銷活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低元,根據(jù)市場調(diào)查,銷售商一次訂購不會(huì)超過600.

1設(shè)一次訂購件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;

2當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,的中點(diǎn).

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略的不斷深入實(shí)施,高新技術(shù)企業(yè)在科技創(chuàng)新和經(jīng)濟(jì)發(fā)展中的帶動(dòng)作用日益凸顯,某能源科學(xué)技術(shù)開發(fā)中心擬投資開發(fā)某新型能源產(chǎn)品,估計(jì)能獲得萬元的投資收益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)議案:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,獎(jiǎng)金不超過萬元,同時(shí)獎(jiǎng)金不超過投資收益的.(即:設(shè)獎(jiǎng)勵(lì)方案函數(shù)模擬為時(shí),則公司對(duì)函數(shù)模型的基本要求是:當(dāng)時(shí),①是增函數(shù);②恒成立;③恒成立.

1)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(I;(II.試分析這兩個(gè)函數(shù)模型是否符合公司要求?

2)已知函數(shù)符合公司獎(jiǎng)勵(lì)方案函數(shù)模型要求,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,E,F分別為棱AA1CC1的中點(diǎn),則在空間中與三條直線A1D1EF,CD都相交的直線(

A.不存在B.有且只有兩條C.有且只有三條D.有無數(shù)條

查看答案和解析>>

同步練習(xí)冊(cè)答案