【題目】已知函數(shù)/(x.

(1)當時,求最小值;

(2)若存在單調遞減區(qū)間,求的取值范圍;

(3)求證:.

【答案】(1)1;(2);(3)見解析

【解析】分析:(I)可先求f′(x),從而判斷f(x)在x[1,+∞)上的單調性,利用其單調性求f(x)在x[1,+∞)最小值;(Ⅱ)求h′(x),可得f(x)存在單調遞減區(qū)間,需h′(x)<0有正數(shù)解.從而轉化為:ax2+2(a﹣1)x+a<0x>0的解.通過對aa=0,a<0與當a>0三種情況討論解得a的取值范圍;(Ⅲ)(法一)根據(jù)(Ⅰ)的結論,當x>1時,,即.,再構造函數(shù),令,有,從而,問題可解決;(法二)可用數(shù)學歸納法予以證明.當n=1時,ln(n+1)=ln2,3ln2=ln8>1,成立;設時,命題成立,即,,再去證明n=k+1時,即可(需用好歸納假設).

詳解:

(1),定義域為.

上是增函數(shù).

.

(2)因為

因為若存在單調遞減區(qū)間,所以有正數(shù)解.

有解.

①當時,明顯成立.

②當時,開口向下的拋物線,總有有解;

③當時,開口向上的拋物線,即方程有正跟.

時,;

,解得.

綜合①②③知:.

綜上所述:的取值范圍為.

(3)(法一)根據(jù)(1)的結論,當時,,即.

,則有,

.

.

(法二)當時,.

,∴,即時命題成立.

設當時,命題成立,即.

時,

根據(jù)(1)的結論,當時,,即.

,則有,

則有

時命題也成立.

因此,由數(shù)學歸納法可知不等式成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)b,c;

2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;

3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的迅速發(fā)展,越來越多的消費者開始選擇網(wǎng)絡購物這種消費方式某營銷部門統(tǒng)計了2019年某月錦州的十大特產(chǎn)的網(wǎng)絡銷售情況得到網(wǎng)民對不同特產(chǎn)的最滿意度和對應的銷售額(萬元)數(shù)據(jù),如下表:

特產(chǎn)種類

最滿意度

銷售額(萬元)

求銷量額關于最滿意度的相關系數(shù);

我們約定:銷量額關于最滿意度的相關系數(shù)的絕對值在以上(含)是線性相關性較強;否則,線性相關性較弱.如果沒有達到較強線性相關,則采取“末位淘汰”制(即銷售額最少的特產(chǎn)退出銷售),并求在剔除“末位淘汰”的特產(chǎn)后的銷量額關于最滿意度的線性回歸方程(系數(shù)精確到).

參考數(shù)據(jù):,.

附:對于一組數(shù)據(jù).其回歸直線方程的斜率和截距的最小二乘法估計公式分別為:,.線性相關系數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , 底面.

(1)證明: ;

(2)設,求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查我市在校中學生參加體育運動的情況,從中隨機抽取了16名男同學和14 名女同學,調查發(fā)現(xiàn),男、女同學中分別有12人和6人喜愛運動,其余不喜愛.

(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.010的前提下認為性別與喜愛運動有關?

(3)將以上統(tǒng)計結果中的頻率視作概率,從我市中學生中隨機抽取3人,若其中喜愛運動的人數(shù)為,求的分布列和均值.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種農(nóng)作物可以生長在灘涂和鹽堿地,它的灌溉是將海水稀釋后進行灌溉.某實驗基地為了研究海水濃度對畝產(chǎn)量(噸)的影響,通過在試驗田的種植實驗,測得了該農(nóng)作物的畝產(chǎn)量與海水濃度的數(shù)據(jù)如下表:

海水濃度

畝產(chǎn)量(噸)

殘差

繪制散點圖發(fā)現(xiàn),可以用線性回歸模型擬合畝產(chǎn)量(噸)與海水濃度之間的相關關系,用最小二乘法計算得之間的線性回歸方程為.

(1)求的值;

(2)統(tǒng)計學中常用相關指數(shù)來刻畫回歸效果,越大,回歸效果越好,如假設,就說明預報變量的差異有是解釋變量引起的.請計算相關指數(shù)(精確到),并指出畝產(chǎn)量的變化多大程度上是由澆灌海水濃度引起的?

(附:殘差,相關指數(shù),其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進一批新能源汽車制造設備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.

1)求出2019年的利潤(萬元)關于年產(chǎn)量x(百輛)的函數(shù)關系式;(利潤=銷售額成本)

22019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設an= sin ,Sn=a1+a2+…+an , 在S1 , S2 , …S100中,正數(shù)的個數(shù)是(
A.25
B.50
C.75
D.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校選派甲、乙、丙、丁、戊5名學生代表學校參加市級“演講”和“詩詞”比賽,下面是他們的一段對話甲說:“乙參加‘演講’比賽”;乙說:“丙參加‘詩詞’比賽”;丙說“丁參加‘演講’比賽”;丁說:“戊參加‘詩詞’比賽”;戊說:“丁參加‘詩詞’比賽”

已知這5個人中有2人參加演講比賽3人參加詩詞比賽,其中有2人說的不正確且參加“演講”的2人中只有1人說的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

同步練習冊答案