【題目】先閱讀參考材料,再解決此問(wèn)題:

參考材料:求拋物線弧)與x軸及直線所圍成的封閉圖形的面積

解:把區(qū)間進(jìn)行n等分,得個(gè)分點(diǎn)),過(guò)分點(diǎn),作x軸的垂線,交拋物線于,并如圖構(gòu)造個(gè)矩形,先求出個(gè)矩形的面積和,再求,即是封閉圖形的面積,又每個(gè)矩形的寬為,第i個(gè)矩形的高為,所以第i個(gè)矩形的面積為

所以封閉圖形的面積為

閱讀以上材料,并解決此問(wèn)題:已知對(duì)任意大于4的正整數(shù)n,

不等式恒成立,

則實(shí)數(shù)a的取值范圍為______

【答案】

【解析】

作出的圖像,可得以0為原點(diǎn),1為半徑的圓在第一象限的部分,把區(qū)間進(jìn)行n等分,得n-1個(gè)分點(diǎn),過(guò)分點(diǎn),作x軸的垂線,交拋物線于,并如圖構(gòu)造個(gè)矩形,先求出個(gè)矩形的面積和,再求,即為封閉圖形的面積,運(yùn)用圓的面積公式結(jié)合恒成立問(wèn)題的解法,即可得解.

作出的圖像,可得以0為原點(diǎn),1為半徑的圓在第一象限的部分,

把區(qū)間進(jìn)行n等分,得n-1個(gè)分點(diǎn),過(guò)分點(diǎn),作x軸的垂線,交拋物線于,并如圖構(gòu)造個(gè)矩形,先求出個(gè)矩形的面積和,再求,即是封閉圖形的面積,又每個(gè)矩形的寬為,第i個(gè)矩形的高為,所以第i個(gè)矩形的面積為;

,

則封閉圖形的面積為

恒成立,

可得的范圍是.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在實(shí)數(shù)集上的偶函數(shù)和奇函數(shù)滿足.

1)求的解析式;

2)若定義在實(shí)數(shù)集上的以2為最小正周期的周期函數(shù),當(dāng)時(shí),,試求在閉區(qū)間上的表達(dá)式,并證明在閉區(qū)間上單調(diào)遞減;

3)設(shè)(其中為常數(shù)),若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cx22pyp0),直線l1ykx+t與拋物線C交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)右側(cè)),直線l2ykx+mmt)交拋物線CMN兩點(diǎn)(M點(diǎn)在N點(diǎn)右側(cè)),直線AM與直線BN交于點(diǎn)E,交點(diǎn)E的橫坐標(biāo)為2k,則拋物線C的方程為(

A.x2yB.x22yC.x23yD.x24y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在區(qū)間內(nèi)存在零點(diǎn).

1)求的范圍;

2)設(shè),的兩個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家號(hào)召,打贏脫貧致富攻堅(jiān)戰(zhàn),武漢大學(xué)團(tuán)隊(duì)帶領(lǐng)湖北省大悟縣新城鎮(zhèn)熊灣村村民建立有機(jī)、健康、高端、綠色的蔬菜基地,并策劃生產(chǎn)、運(yùn)輸、銷售一體化的直銷供應(yīng)模式,據(jù)統(tǒng)計(jì),當(dāng)?shù)卮迕駜赡陼r(shí)間成功脫貧.蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市,每份15元的價(jià)格賣(mài)給顧客,如果當(dāng)天前8小時(shí)賣(mài)不完,則超市通過(guò)促銷以每份5元的價(jià)格賣(mài)給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且.若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤(rùn)的期望值為決策依據(jù),若購(gòu)進(jìn)17份比購(gòu)進(jìn)18份的利潤(rùn)的期望值大,則x的最小值是________.

8小時(shí)內(nèi)銷售量

15

16

17

18

19

20

21

頻數(shù)

10

x

16

16

15

13

y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列.如果數(shù)列滿足, ,其中,則稱的“衍生數(shù)列”.

(Ⅰ)若數(shù)列的“衍生數(shù)列”是,求;

(Ⅱ)若為偶數(shù),且的“衍生數(shù)列”是,證明:的“衍生數(shù)列”是

(Ⅲ)若為奇數(shù),且的“衍生數(shù)列”是的“衍生數(shù)列”是,….依次將數(shù)列,,…的第項(xiàng)取出,構(gòu)成數(shù)列 .證明:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右焦點(diǎn)分別為,橢圓右頂點(diǎn)為,點(diǎn)在圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上,且位于第四象限,點(diǎn)在圓上,且位于第一象限,已知,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)證明:f(x)≥5;

(2)若f(1)<6成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)x∈R,其中a,b∈R.

)求fx)的單調(diào)區(qū)間;

)若fx)存在極值點(diǎn)x0,且fx1= fx0),其中x1≠x0,求證:x1+2x0=3;

)設(shè)a0,函數(shù)gx= |fx|,求證:gx)在區(qū)間[0,2]上的最大值不小于.

查看答案和解析>>

同步練習(xí)冊(cè)答案