【題目】已知數(shù)列.如果數(shù)列滿足, ,其中,則稱為的“衍生數(shù)列”.
(Ⅰ)若數(shù)列的“衍生數(shù)列”是,求;
(Ⅱ)若為偶數(shù),且的“衍生數(shù)列”是,證明:的“衍生數(shù)列”是;
(Ⅲ)若為奇數(shù),且的“衍生數(shù)列”是,的“衍生數(shù)列”是,….依次將數(shù)列,,,…的第項取出,構(gòu)成數(shù)列 .證明:是等差數(shù)列.
【答案】(Ⅰ);(Ⅱ)見解析;(Ⅲ)見解析
【解析】
(Ⅰ)根據(jù)定義可以得到關(guān)于的方程組,解這個方程組可得.
(Ⅱ)我們可以先計算及,于是我們猜測,用數(shù)學歸納法可以證明這個結(jié)論.最后再去證明的“衍生數(shù)列”就是.我們也可以對 ,進行代數(shù)變形得到,再根據(jù)得到數(shù)列是的“衍生數(shù)列”.
(Ⅲ)設數(shù)列中后者是前者的“衍生數(shù)列”,要證是等差數(shù)列,可證成等差數(shù)列,由(Ⅱ)中的證明可知,,代數(shù)變形后根據(jù)為奇數(shù)可以得到.也可以利用(Ⅱ)中的代數(shù)變形方法得到,從而得到, 即 成等差數(shù)列,再根據(jù)得到成等差數(shù)列.
(Ⅰ)解:因為,所以,
又,所以,
,故,同理有
,因此,,所以.
(Ⅱ)證法一:
證明:由已知, ,.
因此,猜想.
① 當時,,猜想成立;
② 假設時,.
當時,
故當時猜想也成立.
由 ①、② 可知,對于任意正整數(shù),有.
設數(shù)列 的“衍生數(shù)列”為 ,則由以上結(jié)論可知
,其中 .
由于為偶數(shù),所以,
所以,其中.
因此,數(shù)列即是數(shù)列.
證法二:
因為 ,
,
,
……
,
由于為偶數(shù),將上述個等式中的第這個式子都乘以,相加得
即,
由于,,
根據(jù)“衍生數(shù)列”的定義知,數(shù)列是的“衍生數(shù)列”.
(Ⅲ)證法一:
證明:設數(shù)列中后者是前者的“衍生數(shù)列”.欲證成等差數(shù)列,只需證明成等差數(shù)列,即只要證明 即可.
由(Ⅱ)中結(jié)論可知,
,
所以,,即成等差數(shù)列,
所以是等差數(shù)列.
證法二:
因為,
所以.
所以欲證成等差數(shù)列,只需證明成等差數(shù)列即可.
對于數(shù)列及其“衍生數(shù)列”,
因為 ,
,
,
……
,
由于為奇數(shù)數(shù),將上述個等式中的第這個式子都乘以,相加得
即,
設數(shù)列的“衍生數(shù)列”為,
因為,
所以, 即 成等差數(shù)列.
同理可證,也成等差數(shù)列.
即是等差數(shù)列.所以成等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,真命題是( 。
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、是異面直線,、是異面直線,則、是異面直線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:(a>b>0)的離心率e.
(1)若點P(1,)在橢圓E上,求橢圓E的標準方程;
(2)若D(2,0)在橢圓內(nèi)部,過點D斜率為的直線交橢圓E于M.N兩點,|MD|=2|ND|,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程;
(2)射線與曲線分別交于兩點(異于原點),定點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先閱讀參考材料,再解決此問題:
參考材料:求拋物線弧()與x軸及直線所圍成的封閉圖形的面積
解:把區(qū)間進行n等分,得個分點(),過分點,作x軸的垂線,交拋物線于,并如圖構(gòu)造個矩形,先求出個矩形的面積和,再求,即是封閉圖形的面積,又每個矩形的寬為,第i個矩形的高為,所以第i個矩形的面積為;
所以封閉圖形的面積為
閱讀以上材料,并解決此問題:已知對任意大于4的正整數(shù)n,
不等式恒成立,
則實數(shù)a的取值范圍為______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列.如果數(shù)列滿足, ,其中,則稱為的“衍生數(shù)列”.
(Ⅰ)若數(shù)列的“衍生數(shù)列”是,求;
(Ⅱ)若為偶數(shù),且的“衍生數(shù)列”是,證明:的“衍生數(shù)列”是;
(Ⅲ)若為奇數(shù),且的“衍生數(shù)列”是,的“衍生數(shù)列”是,….依次將數(shù)列,,,…的第項取出,構(gòu)成數(shù)列 .證明:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( )
A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)
C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,令,其導函數(shù)為,設是函數(shù)的兩個零點,判斷是否為的零點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是數(shù)列的前項和,對任意都有成立(其中是常數(shù)).
(1)當時,求:
(2)當時,
①若,求數(shù)列的通項公式:
②設數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“數(shù)列”,如果,試問:是否存在數(shù)列為“數(shù)列”,使得對任意,都有,且,若存在,求數(shù)列的首項的所有取值構(gòu)成的集合;若不存在.說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com