【題目】某調(diào)查機(jī)構(gòu)為了了解某產(chǎn)品年產(chǎn)量x()對價格y(千克/)和利潤z的影響,對近五年該產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:

x

1

2

3

4

5

y

17.0

16.5

15.5

13.8

12.2

1)求y關(guān)于x的線性回歸方程;

2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤w取到最大值?

參考公式:

【答案】12)當(dāng)時,年利潤最大.

【解析】

1)方法一:令,先求得關(guān)于的回歸直線方程,由此求得關(guān)于的回歸直線方程.方法二:根據(jù)回歸直線方程計算公式,計算出回歸直線方程.方法一的好處在計算的數(shù)值較小.

2)求得w的表達(dá)式,根據(jù)二次函數(shù)的性質(zhì)作出預(yù)測.

1)方法一:取,則得的數(shù)據(jù)關(guān)系如下

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

,

,

.

,

關(guān)于的線性回歸方程是

關(guān)于的線性回歸方程是.

方法二:因為,

,

,

,

,

所以,

關(guān)于的線性回歸方程是

2)年利潤,根據(jù)二次函數(shù)的性質(zhì)可知:當(dāng)時,年利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若,的兩個零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)是曲線為參數(shù))上的動點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)為中心,將線段順時針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線

1)求曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點(diǎn)的坐標(biāo)為,射線與曲線分別交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進(jìn)行科學(xué)試驗.為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進(jìn)行做接種試驗.該試驗的設(shè)計為:①對參加試驗的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗共進(jìn)行3個周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無關(guān).

1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗,求一只小白鼠至多能參加一個接種周期試驗的概率;

2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個接種周期結(jié)束后,對其終止試驗.設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中,底面為正方形,為等邊三角形,平面,點(diǎn)是線段上除兩端點(diǎn)外的一點(diǎn).

1)若點(diǎn)為線段的中點(diǎn),證明:平面;

2)若二面角的余弦值為,試通過計算說明點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02,...,39,4040個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為(

A.23B.21C.35D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實(shí)驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

表中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3sin2θ)=12,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線C交于M,N兩點(diǎn).

1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;

2)求曲線C的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、公司和自主創(chuàng)業(yè)等五大行業(yè)2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計算機(jī)科學(xué)與技術(shù)和金融工程等三個本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人現(xiàn)采用.分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.

1)應(yīng)從該學(xué)院三個專業(yè)的畢業(yè)生中分別抽取多少人?

2)國家鼓勵大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,就業(yè)意向恰有三個行業(yè)的學(xué)生有5人為方便統(tǒng)計,將恰有三個行業(yè)就業(yè)意向的這5名學(xué)生分別記為、、、,統(tǒng)計如下表:

公務(wù)員

×

×

教師

×

×

金融

×

公式

×

×

自主創(chuàng)業(yè)

×

×

其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無該行業(yè)就業(yè)意向.

現(xiàn)從、、、5人中隨機(jī)抽取2人接受采訪.設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊答案