如圖,將邊長為1的正六邊形鐵皮的六個(gè)角各切去一個(gè)全等的四邊形,再沿虛線折起,做成一個(gè)無蓋的正六棱柱容器.當(dāng)這個(gè)正六棱柱容器的底面邊長為多少時(shí),其容積最大.

解析:設(shè)被切去的全等四邊形的一邊長為x,如圖,則正六棱柱的底面邊長為1-2x,高為x,

∴正六棱柱的體積V=6×(1-2x)2×3x(0<x),化簡得V=(4x3-4x2+x).

V′=(12x2-8x+1),由V′=0,得x=x=.

∵當(dāng)x∈(0, )時(shí),V′>0,V是增函數(shù);

當(dāng)x∈(,)時(shí)V′<0,V是減函數(shù).

∴當(dāng)x=時(shí),V有最大值,此時(shí)正六棱柱的底面邊長為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為1的正六邊形鐵皮的六個(gè)角各切去一個(gè)全等的四邊形,再沿虛線折起,做成一個(gè)無蓋的正六棱柱容器.當(dāng)這個(gè)正六棱柱容器的底面邊長為
 
時(shí),其容積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

、如圖,將邊長為1的正六邊形鐵皮的六個(gè)角各切去一個(gè)全等的四邊形,再沿虛線折成一個(gè)無蓋的正六棱柱容器,當(dāng)容器底邊長為         時(shí),容積最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)選修2-21.4導(dǎo)數(shù)在實(shí)際生活的實(shí)際應(yīng)用練習(xí)卷(解析版) 題型:填空題

如圖,將邊長為1的正六邊形鐵皮的六個(gè)角各切去一個(gè)全等的四邊形,再沿虛線折起,做成一個(gè)無蓋的正六棱柱容器(圖).當(dāng)這個(gè)正六棱柱容器的底面邊長為      時(shí),其容積最大.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建 題型:填空題

如圖,將邊長為1的正六邊形鐵皮的六個(gè)角各切去一個(gè)全等的四邊形,再沿虛線折起,做成一個(gè)無蓋的正六棱柱容器.當(dāng)這個(gè)正六棱柱容器的底面邊長為 ______時(shí),其容積最大.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案