如圖,將邊長為1的正六邊形鐵皮的六個(gè)角各切去一個(gè)全等的四邊形,再沿虛線折起,做成一個(gè)無蓋的正六棱柱容器(圖).當(dāng)這個(gè)正六棱柱容器的底面邊長為 時(shí),其容積最大.
【解析】
試題分析:如圖,設(shè)底面六邊形的邊長為x,高為d,則
d=(1-x); 又底面六邊形的面積為:
S=6••X2•sin60°=x2;所以,這個(gè)正六棱柱容器的容積為:
V=Sd=x2•(1-x)=(x2-x3),則對V求導(dǎo),則
V′=(2x-3x2),令V′=0,得x=0或x=,
當(dāng)0<x<時(shí),V′>0,V是增函數(shù);當(dāng)x>時(shí),V′<0,V是減函數(shù);∴x=時(shí),V有最大值.
故答案為。
考點(diǎn):本題主要考查導(dǎo)數(shù)的應(yīng)用,幾何體的體積公式。
點(diǎn)評:典型題。理解題意,構(gòu)建函數(shù)模型是關(guān)鍵,記牢公式,求導(dǎo)計(jì)算。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
、如圖,將邊長為1的正六邊形鐵皮的六個(gè)角各切去一個(gè)全等的四邊形,再沿虛線折成一個(gè)無蓋的正六棱柱容器,當(dāng)容器底邊長為 時(shí),容積最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com