1.設(shè)命題p:方程$\frac{x^2}{a+6}+\frac{y^2}{a-7}=1$表示焦點(diǎn)在坐標(biāo)軸上的雙曲線,命題q:?x∈R,x2-4x+a<0.若“p或?q”為真命題,求實(shí)數(shù)a的取值范圍.

分析 命題p:方程$\frac{x^2}{a+6}+\frac{y^2}{a-7}=1$表示焦點(diǎn)在坐標(biāo)軸上的雙曲線,則(a+6)(a-7)<0,解得a范圍.命題q:?x∈R,x2-4x+a<0.則△>0,解得a范圍.可得¬q.再利用“p或?q”為真命題即可得出.

解答 解:命題p:方程$\frac{x^2}{a+6}+\frac{y^2}{a-7}=1$表示焦點(diǎn)在坐標(biāo)軸上的雙曲線,則(a+6)(a-7)<0,解得-6<a<7.
命題q:?x∈R,x2-4x+a<0.則△=16-4a>0,解得a<4.可得¬q:[4,+∞).
∵“p或?q”為真命題,∴-6<a<7或a≥4.
∴實(shí)數(shù)a的取值范圍是(-6,+∞).

點(diǎn)評(píng) 本題考查了雙曲線的標(biāo)準(zhǔn)方程、不等式的解集與判別式的關(guān)系、復(fù)合命題真假的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.2016年某省人社廳推出15項(xiàng)改革措施,包括機(jī)關(guān)事業(yè)單位基本養(yǎng)老保險(xiǎn)制度改革、調(diào)整機(jī)關(guān)事業(yè)單位工資標(biāo)準(zhǔn)、全省縣以下機(jī)關(guān)建立職務(wù)與職級(jí)并行制度.某市為了了解該市市民對(duì)這些改革措施的態(tài)度,在該市隨機(jī)抽取了50名市民進(jìn)行調(diào)查,作出了他們?cè)率杖耄▎挝唬喊僭秶篬15,75])的頻率分布直方圖,同時(shí)得到其中各種月收入情況的市民對(duì)該項(xiàng)政策贊成的人數(shù)統(tǒng)計(jì)表.
月收入贊成人數(shù)
[15,25)4
[25,35)8
[35,45)12
[45,55)5
[55,65)2
[65,75]2
(1)求月收入在百元內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖,在圖中標(biāo)出相應(yīng)的縱坐標(biāo);
(2)根據(jù)頻率分布直方圖估計(jì)這50人的平均月收入;
(3)為了這個(gè)改革方案能夠更好的實(shí)施,從這些調(diào)查者中選取代表提供建議,若從月收入在[35,45)百元和[65,75]百元的不贊成的被調(diào)查者中隨機(jī)抽取2人,求這兩名代表月收入差不超過(guò)1000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知等差數(shù)列{an}的公差d≠0,且a3,a5,a15成等比數(shù)列,若a1=3,Sn為數(shù)列an的前n項(xiàng)和,則an•Sn的最小值為( 。
A.0B.-3C.-20D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,2sinA=acosB,b=$\sqrt{5}$.
(1)若c=2,求sinC;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知焦點(diǎn)在x軸上的橢圓的離心率為$\frac{1}{2}$,且它的長(zhǎng)軸長(zhǎng)等于4,則橢圓的標(biāo)準(zhǔn)方程是( 。
A.$\frac{x^2}{4}+\frac{y^2}{3}$=1B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{16}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某興趣小組有男生20人,女生10人,從中抽取一個(gè)容量為5的樣本,恰好抽到2名男生和3名女生,則
①該抽樣可能是系統(tǒng)抽樣;
②該抽樣可能是隨機(jī)抽樣:
③該抽樣一定不是分層抽樣;
④本次抽樣中每個(gè)人被抽到的概率都是$\frac{1}{5}$.
其中說(shuō)法正確的為(  )
A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.直線ax+2by+2=0與圓x2+y2=2相切,切點(diǎn)在第一象限內(nèi),則$\frac{1}{a^2}+\frac{1}{b^2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知α為第二象限角,sin(π+α)=-$\frac{1}{3}$,則tanα=( 。
A.-$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.下列集合中,不同于另外三個(gè)集合的是③.
①{x|x=1}   ②{y|(y-1)2=0}      ③{x=1}    ④{1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案