設(shè)函數(shù)f(x)=x2-x+alnx,其中a≠0.
(1)a=-6,求函數(shù)f(x)在[1,4]上的最值;
(2)設(shè)函數(shù)f(x)既有極大值,又有極小值,求實數(shù)a的取值范圍;
(3)求證:當(dāng)n∈N*時,e n(n2-1)≥(n!)3
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求導(dǎo)數(shù),確定函數(shù)f(x)在[1,4]上的單調(diào)性,即可求函數(shù)f(x)在[1,4]上的最值;
(2)函數(shù)f(x)既有極大值,又有極小值,f′(x)=
2x2-x+a
x
=0在(0,+∞)內(nèi)有兩個不等實根,可得2x2-x+a=0在(0,+∞)內(nèi)有兩個不等實根,即可求實數(shù)a的取值范圍;
(3)求出f(x)min=f(1)=0,可得k2-k≥lnk,即(12+22+…+n2)-(1+2+…+n)≥lnn!,即可證明結(jié)論.
解答: (1)解:a=-6,f(x)=x2-x+alnx,
∴f′(x)=
(2x+3)(x-2)
x
,x>0
∴x∈[1,2],f′(x)≤0,x∈[2,4],f′(x)≥0,
∴f(x)min=f(2)=2-6ln2,f(x)max=max{f(1),f(4)},
∵f(1)=0,f(4)=12-12ln2>0,
∴f(x)max=12-12ln2;
(2)解:∵函數(shù)f(x)既有極大值,又有極小值,
∴f′(x)=
2x2-x+a
x
=0在(0,+∞)內(nèi)有兩個不等實根,
∴2x2-x+a=0在(0,+∞)內(nèi)有兩個不等實根,
令g(x)=2x2-x+a,則
△=1-8a>0
g(0)=a>0
,解得0<a<
1
8
,
(3)證明:a=-1時,f(x)=x2-x-lnx,
∴f′(x)=
(2x+1)(x-1)
x
≥0恒成立,
∴f(x)在[1,+∞)上為增函數(shù),
∴f(x)min=f(1)=0,
∴x2-x≥lnx(x=1時取等號),
則k2-k≥lnk,
∴(12+22+…+n2)-(1+2+…+n)≥lnn!,
n(n+1)(2n+1)
6
-
n(n+1)
2
≥lnn!,
n(n2-1)
3
)≥lnn!,
∴e n(n2-1)≥(n!)3
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查函數(shù)的極值與最值,考查不等式的證明,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(2x+φ),(|φ|<
π
2
,x∈R)的圖象的一部分如圖所示,為了得到函數(shù)f(x)的圖象,只要將函數(shù)g(x)=2cos2x的圖象上所有的點(  )
A、向左平移
π
6
個單位長度
B、向右平移
π
6
個單位長度
C、向左平移
π
3
個單位長度
D、向右平移
π
3
個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線C1
2
ρcos(θ+
π
4
)=1,設(shè)C1與極軸的交點為P.以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為
x=
2
cosϕ
y=sinϕ
(ϕ為參數(shù)).
(Ⅰ)求點P的直角坐標(biāo),并把曲線C2化成普通方程;
(Ⅱ)若動直線l過點P,且與曲線C2交于兩個不同的點A,B,求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為d,求證:
am-an
m-n
=d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率分別為e1、e2的橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)和雙曲線C2
x2
a2
-
y2
b2
=1的兩個公共頂點為A、B,若P、Q分別為雙曲線C2和橢圓C1上不同于A、B的動點,且滿足
AP
+
BP
=λ(
AQ
+
BQ
)(λ∈R,|λ|>1).如果直線AP、BP、AQ、BQ的斜率依次記為k1、k2、k3、k4
(1)求證:e12+e22=2;
(2)求證:k1+k2+k3+k4=0;
(3)設(shè)F1、F2分別為橢圓C1和雙曲線C2的右焦點,若PF2∥QF1,求k12+k22+k32+k42的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a2-3a+1=0,求
(a3+a-3)(a3-a-3)
(a4+a-4+1)(a-a-1)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1).
(Ⅰ)若
m
p
,求sin2x的值;
(Ⅱ)設(shè)f(x)=
m
n
,求f(x)的最小正周期;
(Ⅲ)設(shè)f(x)=
m
n
,△ABC三邊滿足b2=ac且b所對角θ的取值集合為M,當(dāng)x∈M時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,點A1在底面ABC上的射影恰好是AB的中點O,底面ABC是正三角形,其重心為G點,D是BC中點,B1D交BC1于E.
(1)求證:GE∥側(cè)面AA1B1B;
(2)若AA1=AB,求直線BC1與底面ABC所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點P(1+2cosx,2+2cos2x)和點Q(cosx,-1),x∈R.
(Ⅰ)若向量
OP
OQ
垂直,求x的值.
(Ⅱ)定義函數(shù)f(x)=
OP
OQ
,x∈[0,π],求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案