如圖,在斜三棱柱ABC-A1B1C1中,點(diǎn)A1在底面ABC上的射影恰好是AB的中點(diǎn)O,底面ABC是正三角形,其重心為G點(diǎn),D是BC中點(diǎn),B1D交BC1于E.
(1)求證:GE∥側(cè)面AA1B1B;
(2)若AA1=AB,求直線BC1與底面ABC所成角.
考點(diǎn):直線與平面所成的角,直線與平面平行的判定
專題:空間角
分析:(1)由已知得
DE
EB1
=
BD
B1C1
=
1
2
DE
EB1
=
DG
GA
=
1
2
,從而GE∥AB1,由此能證明GE∥側(cè)面AA1B1B.
(2)令A(yù)A1=AB=2,A1在底面ABC上的射影為AB中心O,連OD延長(zhǎng)到H,使OD=DH,連C1H,BH,由A1C1
.
OH,得A1O
.
C1H,∠C1BH是直線BC1與底面ABC所成角,由此能求出直線BC1與底面ABC所成角.
解答: (1)證明:∵斜三棱柱ABC-A1B1C1中,
點(diǎn)A1在底面ABC上的射影恰好是AB的中點(diǎn)O,
底面ABC是正三角形,其重心為G點(diǎn),D是BC中點(diǎn),B1D交BC1于E,
DE
EB1
=
BD
B1C1
=
1
2

連結(jié)AB1,則
DE
EB1
=
DG
GA
=
1
2
,
∴GE∥AB1,
∵GE不包含于側(cè)面AA1B1B,AB1?側(cè)面AA1B1B,
∴GE∥側(cè)面AA1B1B.
(2)解:令A(yù)A1=AB=2,A1在底面ABC上的射影為AB中心O,
連OD延長(zhǎng)到H,使OD=DH,連C1H,BH,
則由A1C1
.
OH,得A1O
.
C1H,
∠C1BH是直線BC1與底面ABC所成角
C1H=
3
,BH=OC=
3
,
∴tan∠C1HB=1,∴C1BH=
π
4
,
∴直線BC1與底面ABC所成角為
π
4
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查直線與底面所成的角的大小的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從袋中任取3個(gè)小球,每個(gè)小球被取出的可能性都相等,按3個(gè)小球上最大數(shù)字的9倍計(jì)分.用X表示取出的3個(gè)小球上的最大數(shù)字.求:
(Ⅰ)取出的3個(gè)小球上的數(shù)字互不相同的概率;
(Ⅱ)隨機(jī)變量X的分布列和均值;
(Ⅲ)計(jì)分介于20分到40分之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-x+alnx,其中a≠0.
(1)a=-6,求函數(shù)f(x)在[1,4]上的最值;
(2)設(shè)函數(shù)f(x)既有極大值,又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:當(dāng)n∈N*時(shí),e n(n2-1)≥(n!)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(2-x)+ax,a>0,a∈R.
(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線l平行于x軸,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)的區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2cosx,1),
b
=(cosx,
3
sin2x),且f(x)=
a
b

(1)求f(x)在x∈[-
π
3
,
π
3
]的最大值;
(2)若f(x)=1-
3
,x∈[-
π
3
,
π
3
],求x;
(3)函數(shù)f(x)的圖象可以由函數(shù)y=2sin2x的圖象經(jīng)過(guò)怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a(a≠3,a∈R),an+1=Sn+3n,n∈N*
(Ⅰ)設(shè)bn=Sn-3n ,n∈N*,求{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若an+1≥a,n∈N*,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-x+
1
x
,g(x)=x2+x-b,y=f(x)圖象恒過(guò)定點(diǎn)P,且P點(diǎn)既在y=g(x)圖象上,又在y=f(x)的導(dǎo)函數(shù)的圖象上.
(1)求a,b的值;
(2)設(shè)h(x)=
f(x)
g(x)
,求證:當(dāng)x>0且x≠1時(shí),h(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中有一元人民幣兩枚,現(xiàn)依次有放回地隨機(jī)摸取3次,每次摸一枚硬幣.
(1)試問(wèn),一共有多少種不同的結(jié)果,列出所有可能的結(jié)果(其中正面朝上與反面朝上是不同的結(jié)果)
(2)若摸到正面朝上時(shí)得2分,摸到反面朝上得1分,求3次摸得總分為5分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于圖中的正方體ABCD-A1B1C1D1,下列說(shuō)法正確的有:
 

①P點(diǎn)在線段BD上運(yùn)動(dòng),棱錐P-AB1D1體積不變;
②P點(diǎn)在線段BD上運(yùn)動(dòng),直線AP與平面A1B1C1D1平行;
③一個(gè)平面α截此正方體,如果截面是三角形,則必為銳角三角形;
④一個(gè)平面α截此正方體,如果截面是四邊形,則必為平行四邊形;
⑤平面α截正方體得到一個(gè)六邊形(如圖所示),則截面α在平面AB1D1與平面BDC1間平行移動(dòng)時(shí)此六邊形周長(zhǎng)先增大,后減小.

查看答案和解析>>

同步練習(xí)冊(cè)答案