【題目】已知函數(shù) .

(1)討論函數(shù)的定義域內(nèi)的極值點的個數(shù);

(2)若函數(shù)處取得極值,恒成立,求實數(shù)的最大值.

【答案】(1)見解析;(2)

【解析】試題分析:(1)對求導(dǎo),進行分類討論根據(jù)導(dǎo)數(shù)的正負,即可能求出函數(shù)在定義域內(nèi)的極值點的個數(shù);(2)由函數(shù)處取得極值可得,從而解得,恒成立等價于,構(gòu)造,求得函數(shù)的單調(diào)性,即可得出,從而求得實數(shù)的最大值.

試題解析:(1)的定義域為,.

當(dāng)時, 上恒成立,函數(shù)f(x)上單調(diào)遞減.

(0,+∞)上沒有極值點.

當(dāng)時,由.

上遞減,在上遞增,即處有極小值.

綜上,當(dāng)時,上沒有極值點;

當(dāng)時,上有一個極值點.

(2) ∵函數(shù)處取得極值,

,則,從而

恒成立

恒成立

,則,由,上遞減,在上遞增.

,故實數(shù)b的最大值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)若有三個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一矩形的一邊在軸上,另兩個頂點在函數(shù)的圖像上,如圖,則此矩形繞軸旋轉(zhuǎn)而成的幾何體的體積的最大值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形中,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是(

;②;

與平面所成的角為;

④四面體的體積為.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

)當(dāng)時,判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,底面是直角梯形,.

(Ⅰ)求證:平面平面;

(Ⅱ)在棱上是否存在一點,使//平面?若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)處取得極值,對任意恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A(1)五人站一排,必須站右邊,則不同的排法有多少種;

(2)晚會原定的5個節(jié)目已排成節(jié)目單,開演前又加了2個節(jié)目,若將這2 個節(jié)目插入原節(jié)目單中,則不同的插法有多少種.

B.有四個編有1、2、3、4的四個不同的盒子,有編有1、2、3、4的四個不同的小球,現(xiàn)把小球放入盒子里.

①小球全部放入盒子中有多少種不同的放法;

②恰有一個盒子沒放球有多少種不同的放法;

③恰有兩個盒子沒放球有多少種不同的放法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為、,過的直線交橢圓于兩點,若橢圓的離心率為的周長為16.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過橢圓的中心而平行于弦的直線交橢圓于點,,設(shè)弦的中點分別為,.證明:,,三點共線.

查看答案和解析>>

同步練習(xí)冊答案