【題目】已知數(shù)列的前n項(xiàng)和為,且.

1)求出數(shù)列的通項(xiàng)公式;

2)記,求數(shù)列的前n項(xiàng)和.

【答案】1;(2.

【解析】

1)運(yùn)用數(shù)列的遞推式:時(shí),,當(dāng)時(shí),,結(jié)合等比數(shù)列的通項(xiàng)公式,可得所求;

2)求得,運(yùn)用數(shù)列的錯(cuò)位相減法求和,結(jié)合等比數(shù)列的求和公式,計(jì)算可得所求和.

1nN*),

可得n1時(shí),S1+12a1

a11,

當(dāng)n≥2時(shí),anSnSn1,

Sn+n2an,Sn1+n12an1,

相減可得an+12an2an1,

可得an2an1+1,即an+12an1+1),

則數(shù)列{an+1}為首項(xiàng)為2,公比為2的等比數(shù)列,

可得an+12n,即an2n1

2

n項(xiàng)和為Tn

2Tn

兩式相減可得﹣Tn2+2(22+…+2n)=

化簡(jiǎn)可得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)圖象的有下列說(shuō)法:

①若函數(shù)滿(mǎn)足,則的一個(gè)周期為;

②若函數(shù)滿(mǎn)足,則的圖象關(guān)于直線(xiàn)對(duì)稱(chēng);

③函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng);

④若函數(shù)與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則,

其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查,得到了如下的統(tǒng)計(jì)結(jié)果:

(1)若該大學(xué)共有女生750人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);

(2)完成聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”.

附:,其中nabcd為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,過(guò)原點(diǎn)且斜率為1的直線(xiàn)交橢圓兩點(diǎn),四邊形的周長(zhǎng)與面積分別為8與 .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線(xiàn)交橢圓兩點(diǎn),且求證:到直線(xiàn)的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象上有一點(diǎn)列,點(diǎn)軸上的射影是,且(),.

(1)求證:是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2)對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱臺(tái)被過(guò)點(diǎn)的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長(zhǎng)為2的菱形,,平面,.

(Ⅰ)求證:平面平面

(Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面

(2)若在線(xiàn)段上有一點(diǎn)滿(mǎn)足,且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:關(guān)于x的方程x2﹣ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4[3+∞)上是增函數(shù),若“pq”是真命題,“pq”是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案