【題目】關(guān)于函數(shù)圖象的有下列說(shuō)法:

①若函數(shù)滿(mǎn)足,則的一個(gè)周期為

②若函數(shù)滿(mǎn)足,則的圖象關(guān)于直線(xiàn)對(duì)稱(chēng);

③函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng);

④若函數(shù)與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則

其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

【答案】C

【解析】

結(jié)合函數(shù)的周期性和對(duì)稱(chēng)性,對(duì)每個(gè)選項(xiàng)推理論證,即可得到本題答案.

中,以代換,得,所以①正確;

設(shè)上的兩點(diǎn),且,有,由,得,即關(guān)于直線(xiàn)對(duì)稱(chēng),所以②正確;

函數(shù)的圖象由的圖象向左平移1個(gè)單位得到,而的圖象由的圖象關(guān)于軸對(duì)稱(chēng)得,再向右平移3個(gè)單位得到,即,于是函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),所以③錯(cuò)誤;

設(shè)是函數(shù)圖象上的任意一點(diǎn),點(diǎn)P關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)必在的圖象上,有,即,于是,所以④正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位,得到函數(shù)的圖像.

1)當(dāng)時(shí),求的值域

2)令,若對(duì)任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,若有最小值,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】城鎮(zhèn)化是國(guó)家現(xiàn)代化的重要指標(biāo),據(jù)有關(guān)資料顯示,19782013年,我國(guó)城鎮(zhèn)常住人口從1.7億增加到7.3億.假設(shè)每一年城鎮(zhèn)常住人口的增加量都相等,記1978年后第t(限定)年的城鎮(zhèn)常住人口為億.寫(xiě)出的解析式,并由此估算出我國(guó)2017年的城鎮(zhèn)常住人口數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點(diǎn)GAB的中點(diǎn),AB=BE=2.

)求證:EG∥平面ADF;

)求二面角OEFC的正弦值;

)設(shè)H為線(xiàn)段AF上的點(diǎn),且AH=HF,求直線(xiàn)BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體的棱長(zhǎng)為分別是的中點(diǎn),則過(guò)且與平行的平面截正方體所得截面的面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷(xiāo)售數(shù)據(jù)得出周銷(xiāo)售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.

(1)根據(jù)周銷(xiāo)售量圖寫(xiě)出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;

(2)寫(xiě)出利潤(rùn)(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷(xiāo)售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為(為參數(shù)),曲線(xiàn)C2的參數(shù)方程為(為參數(shù)).在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線(xiàn)lθα C1,C2 各有一個(gè)交點(diǎn).當(dāng) α0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng) α時(shí),這兩個(gè)交點(diǎn)重合.

(1) 求曲線(xiàn)C1C2的直角坐標(biāo)方程

(2) 設(shè)當(dāng) α時(shí),lC1,C2的交點(diǎn)分別為A1,B1,當(dāng) α=-時(shí),lC1,C2的交點(diǎn)分別為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且.

1)求出數(shù)列的通項(xiàng)公式;

2)記,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案