【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)求函數(shù) 的單調(diào)區(qū)間;
(3)若恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1) 函數(shù)的極大值為,無極小值;(2) 當(dāng)時(shí),在是增函數(shù);當(dāng)時(shí),在是增函數(shù),在是減函數(shù);(3) 實(shí)數(shù)額取值范圍為.
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),利用函數(shù)的單調(diào)性,求解函數(shù)的極值;(2)求出函數(shù)f(x)的定義域,函數(shù)的導(dǎo)數(shù),通過當(dāng)a≤0時(shí),當(dāng)a>0時(shí),分別求解函數(shù)的單調(diào)區(qū)間即可;(3)根據(jù)前兩問得到的極大值即為的最大值即可.
詳解:
(1)當(dāng)時(shí),.
,列表
1 | |||
+ | 0 | - | |
↗ | 2 | ↘ |
∴函數(shù)的極大值為,無極小值;
(2).
①當(dāng)時(shí),恒成立,故在是增函數(shù);
②當(dāng)時(shí),對,是增函數(shù),
對,是減函數(shù).
綜上,當(dāng)時(shí),在是增函數(shù);當(dāng)時(shí),在是增函數(shù),在是減函數(shù).
(3)恒成立,則.
由(2)可知,的極大值即為的最大值,
∴.
∴實(shí)數(shù)額取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求,的值;
(2)若,求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),且在區(qū)間內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣經(jīng)濟(jì)最近十年穩(wěn)定發(fā)展,經(jīng)濟(jì)總量逐年上升,下表是給出的部分統(tǒng)計(jì)數(shù)據(jù):
序號 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
經(jīng)濟(jì)總量(億元) | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,記序號為,請直接寫出與的關(guān)系式;
(2)利用所給數(shù)據(jù)求經(jīng)濟(jì)總量與年份之間的回歸直線方程;
(3)利用(2)中所求出的直線方程預(yù)測該縣2018年的經(jīng)濟(jì)總量.
附:對于一組數(shù)據(jù),
其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點(diǎn),滿足均與軸垂直,設(shè)與的面積之和記為.
若,求的值;
若對任意的,存在,使得成立,且實(shí)數(shù)使得數(shù)列為遞增數(shù)列,其中求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(1+a2)x2 , 其中a>0,區(qū)間I={x|f(x)>0}
(1)求I的長度(注:區(qū)間(a,β)的長度定義為β﹣α);
(2)給定常數(shù)k∈(0,1),當(dāng)1﹣k≤a≤1+k時(shí),求I長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com