【題目】定義在R上的函數f(x),當x∈[0,2]時,f(x)=4(1﹣|x﹣1|),且對于任意實數x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f( ﹣1).若g(x)=f(x)﹣logax有且只有三個零點,則a的取值范圍是( )
A.[2,10]
B.[ , ]
C.(2,10)
D.[2,10)
【答案】C
【解析】解:當x∈[0,2]時,f(x)=4(1﹣|x﹣1|), 當n=2時,x∈[2,6],此時 ﹣1∈[0,2],則f(x)= f( ﹣1)= ×4(1﹣| ﹣1﹣1|)=2(1﹣| ﹣2|),
當n=3時,x∈[6,14],此時 ﹣1∈[2,6],則f(x)= f( ﹣1)= ×2(1﹣| ﹣ |)=1﹣| ﹣ |,
由g(x)=f(x)﹣logax=0,得f(x)=logax,分別作出函數f(x)和y=logax的圖象,
若0<a<1,則此時兩個函數圖象只有1個交點,不滿足條件.
若a>1,當對數函數圖象經過A時,兩個圖象只有2個交點,當圖象經過點B時,兩個函數有4個交點,
則要使兩個函數有3個交點,則對數函數圖象必須在A點以下,B點以上,
∵f(4)=2,f(10)=1,∴A(4,2),B(10,1),
即滿足 ,
即 ,解得 ,
即2<a<10,
故選:C.
由g(x)=f(x)﹣logax=0,得f(x)=logax,分別作出函數f(x)和y=logax的圖象,利用數形結合即可得到結論.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC= AD=1,CD= .
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C為30°,設PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知右焦點為F2(c,0)的橢圓C: + =1(a>b>0)過點(1, ),且橢圓C關于直線x=c對稱的圖形過坐標原點.
(1)求橢圓C的方程;
(2)過點( ,0)作直線l與橢圓C交于E,F兩點,線段EF的中點為M,點A是橢圓C的右頂點,求直線MA的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確是 , (寫出所有正確命題的序號)
①若奇函數f(x)的周期為4,則函數f(x)的圖象關于(2,0)對稱;
②若a∈(0,1),則a1+a<a ;
③函數f(x)=ln 是奇函數;
④存在唯一的實數a使f(x)=lg(ax+ )為奇函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.
(Ⅰ)求m的取值范圍;
(Ⅱ)當m取最大值時,解關于x的不等式:|x﹣3|﹣2x≤2m﹣8.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的頂點在坐標原點,焦點F在y軸正半軸上,過點F的直線交拋物線于A,B兩點,線段AB的長是8,AB的中點到x軸的距離是3.
(1)求拋物線的標準方程;
(2)設直線m在y軸上的截距為6,且與拋物線交于P,Q兩點,連結QF并延長交拋物線的準線于點R,當直線PR恰與拋物線相切時,求直線m的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點分別為F1 , F2 , O為坐標原點,點P是雙曲線在第一象限內的點,直線PO,PF2分別交雙曲線C的左、右支于另一點M,N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說:“如果物理成績好,那么學習數學就沒什么問題.”某班針對“高中生物理學習對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系的結論,現從該班隨機抽取5名學生在一次考試中的物理和數學成績,如表:
成績/編號 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數學(y) | 130 | 125 | 110 | 95 | 90 |
(參考公式: = , = ﹣ )
參考數據:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數學成績y關于物理成績x的線性回歸方程 = x+ ( 精確到0.1),若某位學生的物理成績?yōu)?0分,預測他的數學成績;
(2)要從抽取的這五位學生中隨機選出三位參加一項知識競賽,以X表示選中的學生的數學成績高于100分的人數,求隨機變量X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知遞增數列{an},a1=2,其前n項和為Sn , 且滿足3(Sn+Sn﹣1)= +2(n≥2).
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足 =n,求其前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com