【題目】是雙曲線:的右焦點,左支上的點,已知,則周長的最小值是_______

【答案】

【解析】

設左焦點為,利用雙曲線的定義,得到當三點共線時,三角形的周長取得最小值,并求得最小的周長.

設左焦點為,根據(jù)雙曲線的定義可知,所以三角形的周長為,當三點共線時,取得最小值,三角形的周長取得最小值. ,故三角形周長的最小值為.

【點睛】

本小題主要考查雙曲線的定義,考查三角形周長最小值的求法,屬于中檔題.

型】填空
束】
16

【題目】已知分別是雙曲線的左、右焦點,過點作垂直與軸的直線交雙曲線于,兩點,若為銳角三角形,則雙曲線的離心率的取值范圍是_______

【答案】

【解析】

根據(jù)雙曲線的通徑求得點的坐標,將三角形為銳角三角形,轉化為,即,將表達式轉化為含有離心率的不等式,解不等式求得離心率的取值范圍.

根據(jù)雙曲線的通徑可知,由于三角形為銳角三角形,結合雙曲線的對稱性可知,故,即,即,解得,故離心率的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中文函數(shù)function)一詞,最早由近代數(shù)學家李善蘭翻譯的之所以這么翻譯,他給出的原因是凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù),也即函數(shù)指一個量隨著另一個量的變化而變化下列選項中兩個函數(shù)相等的是(   。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點.

(1)k的取值范圍;

(2)12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品近一個月內(30天)預計日銷量(件)與時間t()的關系如圖1所示,單價(萬元/件)與時間t()的函數(shù)關系如圖2所示,(t為整數(shù))

1)試寫出的解析式;

2)求此商品日銷售額的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中, , 于點 ,且.沿折起到的位置,使

)求證: 平面

)求三棱柱的體積.

)線段上是否存在點,使得平面.若存在,指出點的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點A1-2.

I)求拋物線C的方程,并求其準線方程;

II)是否存在平行于OAO為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

【答案】I)拋物線C的方程為,其準線方程為II)符合題意的直線l 存在,其方程為2x+y-1 =0.

【解析】

試題()求拋物線標準方程,一般利用待定系數(shù)法,只需一個獨立條件確定p的值:(-222p·1,所以p2.再由拋物線方程確定其準線方程:,()由題意設,先由直線OA的距離等于根據(jù)兩條平行線距離公式得:解得,再根據(jù)直線與拋物線C有公共點確定

試題解析:解 (1)將(1,-2)代入y22px,得(-222p·1,

所以p2

故所求的拋物線C的方程為

其準線方程為

2)假設存在符合題意的直線,

其方程為

因為直線與拋物線C有公共點,

所以Δ48t≥0,解得

另一方面,由直線OA的距離

可得,解得

因為-1[,+),1∈[,+),

所以符合題意的直線存在,其方程為

考點:拋物線方程,直線與拋物線位置關系

【名師點睛】求拋物線的標準方程的方法及流程

1)方法:求拋物線的標準方程常用待定系數(shù)法,因為未知數(shù)只有p,所以只需一個條件確定p值即可.

2)流程:因為拋物線方程有四種標準形式,因此求拋物線方程時,需先定位,再定量.

提醒:求標準方程要先確定形式,必要時要進行分類討論,標準方程有時可設為y2=mxx2=mym≠0).

型】解答
束】
22

【題目】已知橢圓的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上.

(1)求橢圓的方程;

(2)直線過橢圓左焦點交橢圓于,為橢圓短軸的上頂點,當直線時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校進行文科、理科數(shù)學成績對比,某次考試后,各隨機抽取100名同學的數(shù)學考試成績進行統(tǒng)計,其頻率分布表如下.

(Ⅰ)根據(jù)數(shù)學成績的頻率分布表,求理科數(shù)學成績的中位數(shù)的估計值;

(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為數(shù)學成績與文理科有關:

(Ⅲ)設文理科數(shù)學成績相互獨立,記表示事件“文科、理科數(shù)學成績都大于等于120分”,估計的概率.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=,EF=1,BC=,且M是BD的中點。

(1)求證:EM∥平面ADF;

(2)求二面角D-AF-B的余弦值;

(3)在線段ED上是否存在一點P,使得BP∥平面ADF?若存在,求出EP的長度;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案