已知直線z的極坐標方程為數(shù)學公式,點A的極坐標為(4,數(shù)學公式),則點A到直線l的距離為


  1. A.
    數(shù)學公式
  2. B.
    1
  3. C.
    數(shù)學公式
  4. D.
    2
C
分析:利用兩角差的余弦函數(shù)展開方程,把極坐標方程化為普通方程,求出A的直角坐標,利用點到直線的距離公式求解即可.
解答:因為可化為:
直線z的直角坐標方程為:x-y+2=0,
點A的極坐標為(4,),它的直角坐標(2,2),
則A到直線的距離為:d==
故選C.
點評:本題是基礎題,考查極坐標與直角坐標的互化,點到直線的距離公式的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(A)4-2矩陣與變換
已知二階矩陣M的特征值是λ1=1,λ2=2,屬于λ1的一個特征向量是e1=
1
1
,屬于λ2的一個特征向量是e2=
-1
2
,點A對應的列向量是a=
1
4

(Ⅰ)設a=me1+ne2,求實數(shù)m,n的值.
(Ⅱ)求點A在M5作用下的點的坐標.

(B)4-2極坐標與參數(shù)方程
已知直線l的極坐標方程為ρsin(θ-
π
3
)=3
,曲線C的參數(shù)方程為
x=cosθ
y=3sinθ
,設P點是曲線C上的任意一點,求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•鹽城模擬)(選修4-4:坐標系與參數(shù)方程)
已知直線l的極坐標方程為θ=
π
4
(ρ∈R),曲線C的參數(shù)方程為
x=2+
2
cosθ
y=
2
sinθ
(θ為參數(shù)),試判斷l(xiāng)與C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省福州市泉港二中高三(上)第11周周考數(shù)學試卷(理科)(解析版) 題型:解答題

本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣,A的一個特征值λ=2,其對應的特征向量是
(Ⅰ)求矩陣A;
(Ⅱ)若向量,計算A2β的值.

(2).選修4-4:坐標系與參數(shù)方程
已知橢圓C的極坐標方程為,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省泰州高級中學高考數(shù)學模擬試卷(解析版) 題型:解答題

附加題:
A.如圖,四邊形ABCD內接于圓O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.設數(shù)列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足=M,試求二階矩陣M.
C.已知橢圓C的極坐標方程為,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
D.已知x,y,z均為正數(shù).求證:

查看答案和解析>>

同步練習冊答案