【題目】對于函數(shù),設(shè),若對所有的都有,則稱互為零點(diǎn)相鄰函數(shù)”.若函數(shù)互為零點(diǎn)相鄰函數(shù),則實(shí)數(shù)a的取值范圍是______.

【答案】

【解析】

先求出fx)的零點(diǎn)為1,結(jié)合fx)與gx)互為“零點(diǎn)相鄰函數(shù)”,得到|1β|1,即0β2,條件轉(zhuǎn)化為一元二次函數(shù)零點(diǎn)范圍,結(jié)合一元二次函數(shù)的性質(zhì)進(jìn)行求解即可.

f x)=x10x1,且f x)單調(diào)遞增,則函數(shù)fx)的唯一零點(diǎn)為1

f x)=x1gx)=x2axa+3互為“零點(diǎn)相鄰函數(shù)”,

設(shè)βgx)的零點(diǎn),則滿足|1β|1,得0β2,

即函數(shù)gx)的零點(diǎn)滿足條件0β2,

g(﹣1)=1+aa+340

∴要使gx)的零點(diǎn)在[0,2]上,

則滿足,即,得,得2a,

即實(shí)數(shù)a的取值范圍是[2,],

故答案為:[2,]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對一次性購買2臺機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購買2臺這種機(jī)器,F(xiàn)需決策在購買機(jī)器時(shí)應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺數(shù)

5

10

20

15

以這50臺機(jī)器維修次數(shù)的頻率代替1臺機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問是否存在,使得恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,AA1AC,且ABACD,E分別為是A1C1BB1的中點(diǎn).

1)求證:A1C⊥平面ABC1;

2)求證:DE平面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知橢圓)的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為

)求橢圓的離心率;

)如圖,是圓的一條直徑,若橢圓經(jīng)過兩點(diǎn),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則的零點(diǎn)個(gè)數(shù)為( )

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過其焦點(diǎn)的直線與拋物線相交于、兩點(diǎn),滿足.

1)求拋物線的方程;

2)已知點(diǎn)的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).

(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,

求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案