【題目】十九大提出:堅決打贏脫貧攻堅戰(zhàn),做到精準(zhǔn)扶貧,某幫扶單位為幫助定點扶貧村真正脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植臍橙,并利用互聯(lián)網(wǎng)電商進行銷售,為了提高銷量,現(xiàn)從該村的臍橙樹上隨機摘下100個臍橙進行測重,其質(zhì)量(單位克)分布在區(qū)間[200500內(nèi),由統(tǒng)計的質(zhì)量數(shù)據(jù)作出頻率分布直方圖如圖所示.

1)按分層抽樣的方法從質(zhì)量在,的臍橙中隨機抽取5個,再從這5個臍橙中隨機抽取2個,求這2個臍橙質(zhì)量至少有一個不小于400克的概率;

2)以各組數(shù)據(jù)的中間數(shù)值代替這組數(shù)據(jù)的平均值,以頻率代替概率,已知該村的臍橙種植地上大約還有100000個臍橙待出售,某電商提出兩種收購方案:

A.所有臍橙均以7/千克收購;

B.低于350克的臍橙以2/個收購,其余的以3/個收購.

請你通過計算為該村選擇收益較好的方案.

【答案】(1)(2)應(yīng)該選擇方案B,詳見解析

【解析】

1)由分層抽樣可得分別在質(zhì)量為的臍橙中抽取3個和2個, 記抽取質(zhì)量在的臍橙為,,,質(zhì)量在的臍橙為,,分別寫出

5個臍橙中隨機抽取2個的結(jié)果及質(zhì)量至少有一個不小于400克的情況,求解概率即可;

2)由頻率分布直方圖分別求出各段的概率,分別求出A,B方案的總收益,比較即可

1)由題得臍橙質(zhì)量在的比例為32,

應(yīng)分別在質(zhì)量為的臍橙中抽取3個和2

記抽取質(zhì)量在的臍橙為,,,質(zhì)量在的臍橙為,,則從這5個臍橙中隨機抽取2個的情況共有以下10種:,,,,,,,,,,其中質(zhì)量至少有一個不小于400克的有7種情況,為:,,,,,,,

故所求概率為

2)方案B,理由如下:

由頻率分布直方圖可知,臍橙質(zhì)量在的頻率為,同理,質(zhì)量在,,,,的頻率依次為0.16,0.24,0.3,0.2,0.05,

按方案A收購:

根據(jù)題意得各段臍橙個數(shù)依次為5000,16000,24000,30000,20000,5000,則總收益為

(元)

按方案B收購:

∵臍橙質(zhì)量低于350克的個數(shù)為,臍橙質(zhì)量不低于350克的個數(shù)為55000,∴收益為(元)

,

∴方案B的收益比方案A的收益高,應(yīng)該選擇方案B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心是坐標(biāo)原點,它的短軸長為,一個焦點為,一個定點,且,過點的直線與橢圓相交于兩點..

1)求橢圓的方程及離心率.

2)如果以為直徑的圓過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測該公司2019年3月份的利潤;

(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導(dǎo)致材料損壞的年限不相同,現(xiàn)對,兩種型號的新型材料對應(yīng)的產(chǎn)品各件進行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:

使用壽命

材料類型

個月

個月

個月

個月

總計

如果你是甲公司的負(fù)責(zé)人,你會選擇采購哪款新型材料?

參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形與梯形所在的平面互相垂直, ,,點在線段上.

() 若點的中點,求證:平面;

() 求證:平面平面;

() 當(dāng)平面與平面所成二面角的余弦值為時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為,點EF,G分別為棱AB,,的中點,下列結(jié)論中,正確結(jié)論的序號是___________.

①過E,F,G三點作正方體的截面,所得截面為正六邊形;

平面EFG;

平面

④異面直線EF所成角的正切值為;

⑤四面體的體積等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,,是邊上一點,將沿折起,得到三棱錐。若該三棱錐的頂點在底面的射影在線段上,設(shè),則的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝國慶節(jié),某中學(xué)團委組織了歌頌祖國,愛我中華知識競賽,從參加考試的學(xué)生中抽出60名,將其成績(成績均為整數(shù))分成[40,50)[50,60),,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:

(1)求第四組的頻率,并補全這個頻率分布直方圖;

(2)估計這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于的一元二次方程

)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,A是橢圓短軸的一個端點,直線AF與橢圓另一交點為B,且.

(1)求橢圓方程;

(2)若斜率為1的直線l交橢圓于C,D,且CD為底邊的等腰三角形的頂點為,求的值.

查看答案和解析>>

同步練習(xí)冊答案