【題目】某高三年級(jí)從甲(文)乙(理)兩個(gè)年級(jí)組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)(滿分:100分)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85分,乙組學(xué)生成績(jī)的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)取兩名學(xué)生,求甲組至少有一名學(xué)生的概率
【答案】解(1)∵甲組學(xué)生的平均分是85,
∴∴x=5.
∵乙組學(xué)生成績(jī)的中位數(shù)是83,∴y=3.
(2)甲組成績(jī)?cè)?0(分)以上的學(xué)生有兩名,分別記為A,B,
乙組成績(jī)?cè)?0(分)以上的學(xué)生有三名,分別記為C,D,E.
從這五名學(xué)生任意抽取兩名學(xué)生共有10種情況:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E) …(8分)
其中甲組至少有一名學(xué)生共有7種情況:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E)
記“從成績(jī)?cè)?0(分)以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,甲組至少有一名學(xué)生”為事件M,
則.
【解析】(1)利用莖葉圖,和平均數(shù)的定義即可得到x的值,根據(jù)中位數(shù)的定義即可求出y的值,
(2)從這五名學(xué)生任意抽取兩名學(xué)生共有10種情況,其中甲組至少有一名學(xué)生共有7種情況,根據(jù)概率公式計(jì)算即可。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識(shí),掌握莖葉圖又稱(chēng)“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)0(0,0),P(6,8),將向量 繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn) 后得向量 ,則點(diǎn)Q的坐標(biāo)是( )
A.(﹣7 ,﹣ )
B.(﹣7 , )
C.(﹣4 ,﹣2)
D.(﹣4 ,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)任意的x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣(x﹣2)2+1.若函數(shù)y=f(x)﹣a(x﹣)在(0,+∞)上恰有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.( , 3)
B.( , )
C.(3,12)
D.( , 12)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校文學(xué)院和理學(xué)院的學(xué)生組隊(duì)參加大學(xué)生電視辯論賽,文學(xué)院推薦了2名男生,3名女生,理學(xué)院推薦了4名男生,3名女生,文學(xué)院和理學(xué)院所推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后學(xué)生水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì).
(1)求文學(xué)院至少有一名學(xué)生入選代表隊(duì)的概率;
(2)某場(chǎng)比賽前,從代表隊(duì)的6名學(xué)生在隨機(jī)抽取4名參賽,記X表示參賽的男生人數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)若,且a分別與,垂直,求向量a的坐標(biāo);
(2)若∥,且,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中不正確的是( )
A. 平面∥平面,一條直線平行于平面,則一定平行于平面
B. 平面∥平面,則內(nèi)的任意一條直線都平行于平面
C. 一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行
D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意實(shí)數(shù)a,b,定義max{a,b}= , 已知在[﹣2,2]上的偶函數(shù)f(x)滿足當(dāng)0≤x≤2時(shí),f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有兩個(gè)根,則m的取值范圍是( 。
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com