【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

2)若射線(xiàn))與直線(xiàn)和曲線(xiàn)分別交于,兩點(diǎn),求的值.

【答案】1),;(2.

【解析】

1)將直線(xiàn)的參數(shù)方程消參,即可得直線(xiàn)的普通方程,要注意;將曲線(xiàn)的極坐標(biāo)方程兩邊同乘,再將代入,即可得曲線(xiàn)的直角坐標(biāo)方程;

2)先將直線(xiàn)的直角坐標(biāo)方程化為極坐標(biāo)方程,再將)代入直線(xiàn)和曲線(xiàn)的極坐標(biāo)方程中,可得點(diǎn)對(duì)應(yīng)的極徑,利用計(jì)算,即可求解.

1)由

為參數(shù))消去參數(shù),

得直線(xiàn)的普通方程為.

,

,代入上式,

,

所以曲線(xiàn)的直角坐標(biāo)方程為.

2)由(1)可知直線(xiàn)的普通方程為),

化為極坐標(biāo)方程得),

當(dāng))時(shí),設(shè),兩點(diǎn)的極坐標(biāo)分別為,,

,

,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】眾所周知,大型網(wǎng)絡(luò)游戲(下面簡(jiǎn)稱(chēng)網(wǎng)游)的運(yùn)行必須依托于網(wǎng)絡(luò)的基礎(chǔ)上,否則會(huì)出現(xiàn)頻繁掉線(xiàn)的情況,進(jìn)而影響游戲的銷(xiāo)售和推廣.某網(wǎng)游經(jīng)銷(xiāo)商在甲地區(qū)個(gè)位置對(duì)兩種類(lèi)型的網(wǎng)絡(luò)(包括“電信”和“網(wǎng)通”)在相同條件下進(jìn)行游戲掉線(xiàn)測(cè)試,得到數(shù)據(jù)如下:

(Ⅰ)如果在測(cè)試中掉線(xiàn)次數(shù)超過(guò)次,則網(wǎng)絡(luò)狀況為“糟糕”,否則為“良好”,那么在犯錯(cuò)誤的概率不超過(guò)的前提下,能否說(shuō)明網(wǎng)絡(luò)狀況與網(wǎng)絡(luò)的類(lèi)型有關(guān)?

(Ⅱ)若該游戲經(jīng)銷(xiāo)商要在上述接受測(cè)試的電信的個(gè)地區(qū)中任選個(gè)作為游戲推廣,求、兩地區(qū)至少選到一個(gè)的概率.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形, , , , 分別為線(xiàn)段 的中點(diǎn).

(1)證明: 平面;

(2)若平面 ,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年茂名市舉辦“好心杯”少年美術(shù)書(shū)法作品比賽,某賽區(qū)收到200件參賽作品,為了解作品質(zhì)量,現(xiàn)從這些作品中隨機(jī)抽取12件作品進(jìn)行試評(píng).成績(jī)?nèi)缦拢?7,82,78,86,96,81,73,84,76,59,85,93.

(1)求該樣本的中位數(shù)和方差;

(2)若把成績(jī)不低于85分(含85分)的作品認(rèn)為為優(yōu)秀作品,現(xiàn)在從這12件作品中任意抽取3件,求抽到優(yōu)秀作品的件數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2的正方形沿對(duì)角線(xiàn)折疊,使得平面平面,又平面.

(1)若,求直線(xiàn)與直線(xiàn)所成的角;

(2)若二面角的大小為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的展開(kāi)式中,前3項(xiàng)的系數(shù)成等差數(shù)列,

1)求的值;

2)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)及各項(xiàng)系數(shù)和;

3)求展開(kāi)式中含的項(xiàng)的系數(shù)及有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對(duì)父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計(jì)情況如下表:

同意

不同意

合計(jì)

男生

a

5

女生

40

d

合計(jì)

100

(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請(qǐng)說(shuō)明理由;

(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機(jī)抽樣的方法抽取4 位學(xué)生進(jìn)行長(zhǎng)期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學(xué)期望.

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20168月巴西里約熱內(nèi)盧舉辦的第31屆奧運(yùn)會(huì)上,乒乓球比賽團(tuán)體決賽實(shí)行五場(chǎng)三勝制,且任何一方獲勝三場(chǎng)比賽即結(jié)束.甲、乙兩個(gè)代表隊(duì)最終進(jìn)入決賽,根據(jù)雙方排定的出場(chǎng)順序及以往戰(zhàn)績(jī)統(tǒng)計(jì)分析,甲隊(duì)依次派出的五位選手分別戰(zhàn)勝對(duì)手的概率如下表:

出場(chǎng)順序

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

獲勝概率

若甲隊(duì)橫掃對(duì)手獲勝(即30獲勝)的概率是,比賽至少打滿(mǎn)4場(chǎng)的概率為.

1)求,的值;

2)求甲隊(duì)獲勝場(chǎng)數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下邊的折線(xiàn)圖給出的是甲、乙兩只股票在某年中每月的收盤(pán)價(jià)格,已知股票甲的極差是6.88元,標(biāo)準(zhǔn)差為2.04元;股票乙的極差為27.47元,標(biāo)準(zhǔn)差為9.63元,根據(jù)這兩只股票在這一年中的波動(dòng)程度,給出下列結(jié)論:①股票甲在這一年中波動(dòng)相對(duì)較小,表現(xiàn)的更加穩(wěn)定;②購(gòu)買(mǎi)股票乙風(fēng)險(xiǎn)高但可能獲得高回報(bào);③股票甲的走勢(shì)相對(duì)平穩(wěn),股票乙的股價(jià)波動(dòng)較大;④兩只般票在全年都處于上升趨勢(shì).其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案