已知函數(shù)f(x)=x2-(2a-4)x+2在[-1,1]內(nèi)的最小值為g(a),求g(a)的最大值.
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:配方,分類討論,即可求出g(a),從而可求g(a)的最大值.
解答: 解:f(x)=x2-(2a-4)x+2=[x-(a-2)]2+2-(a-2)2,對(duì)稱軸是x=a-2
當(dāng)-1≤a-2≤1即1≤a≤3時(shí),最小值g(a)=2-(a-2)2=-a2+4a-2;
當(dāng)a-2>1即a>3時(shí),最小值g(a)=f(1)=7-2a
當(dāng)a-2<-1即a<1時(shí),最小值g(a)=f(-1)=2a-1.
綜上所述,g(a)=
2a-1,a<1
-a2+4a-2,1≤a≤3
7-2a,a>3
,
∴a=2時(shí),g(a)的最大值為2.
點(diǎn)評(píng):本題考查函數(shù)的最值及其幾何意義,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問題的能力,正確分類是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m∈N*,且m<15,則(15-m)(16-m)…(20-m)等于( 。
A、A
 
6
15-m
B、A
 
15-m
20-m
C、A
 
6
20-m
D、A
 
5
20-m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項(xiàng)為10,公差為2,數(shù)列{bn}滿足bn=
n
2
an-6n,n∈N*
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記cn=max{an,bn},求數(shù)列{cn}的前n項(xiàng)和Sn.(注:max{a,b}表示a與b的最大值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ax-
1
x2
,x∈(0,1],求f(x)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求和:Sn=1+2x+3x2+…+nxn-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=-(sinx)3-2sinx的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥AD,AD=
1
2
BC=
3
,PC=
5
,AD∥BC,AB=AC,∠BAD=150°,∠PDA=30°.
(1)求證:PA⊥平面ABCD;
(2)在線段PD上是否存在一點(diǎn)F,使直線CF與平面PBC成角正弦值等于
1
4
?若存在,指出F點(diǎn)位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+|x-a|+1,a∈R,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12-an+1an-2an2=0,n∈N﹡,且a3+2是a2,a4的等差中項(xiàng).?dāng)?shù)列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=
1-(-1)n
2
an-
1+(-1)n
2
bn,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊答案