如圖,為圓的直徑,為垂直于的一條弦,垂足為,弦交于點.

(Ⅰ)證明:四點共圓;
(Ⅱ)證明:.

(Ⅰ)證明過程詳見解析;(Ⅱ)證明過程詳見解析.

解析試題分析:本題考查四點共圓的判定和圓割線的性質(zhì).考查學生的分析問題解決問題的能力.第一問是證明四點共圓,證明四點共圓的基本方法:1.從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.2.若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點共圓.3.把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等于其鄰補角的內(nèi)對角時,即可肯定這四點共圓.4.把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓(相交弦定理的逆定理);或把被證共圓的四點兩兩連結(jié)并延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等于自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.(割線定理的逆定理)5.證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點,即可肯定這四點共圓.上述五種基本方法中的每一種的根據(jù),就是產(chǎn)生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據(jù)命題的條件,并結(jié)合圖形的特點,在這五種基本方法中選擇一種證法,給予證明.第二問是等式的證明,這一問中遇到的圓割線的性質(zhì)(從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等)、相似三角形、勾股定理三式聯(lián)立,證明等式成立.
試題解析:(Ⅰ)連結(jié),則.因為,所以
所以,即四點共圓.                5分

(Ⅱ)連結(jié).由四點共圓,所以.在中,,,所以.           10分
考點:1.四點共圓的判斷;2.圓割線的性質(zhì).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在?ABCD中,設(shè)E和F分別是邊BC和AD的中點,BF和DE分別交AC于P、Q兩點.

求證:AP=PQ=QC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知與⊙相切,為切點,為割線,弦,相交于點,上一點,且.

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在中,的角平分線,的外接圓交.

(1)求證:;
(2)當時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,、是圓的半徑,且,是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過M點作⊙O的切線AM,C是AM的中點,AN交⊙O于B點,若四邊形BCON是平行四邊形;

(Ⅰ)求AM的長;
(Ⅱ)求sin∠ANC. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,△內(nèi)接于⊙,,直線切⊙于點,弦,相交于點.

(Ⅰ)求證:△≌△
(Ⅱ)若,求長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知切⊙于點E,割線PBA交⊙于A、B兩點,∠APE的平分線和AE、BE分別交于點C、D.

求證:
(Ⅰ);
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB、CD是⊙O的兩條平行切線,B、D為切點,AC為⊙O的切線,切點為E.過A作AF⊥CD,F(xiàn)為垂足.

(1)求證:四邊形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案