【題目】動點到距離與到直線的距離之比為,記動點的軌跡為.
(1)求出曲線的方程,并求出的最小值,其中點
(2)是曲線上的動點,且直線經過定點,問在軸上是否存在定點,使得,若存在,請求出定點;若不存在,請說明理由.
【答案】(1),最小值為3;(2)存在,定點.
【解析】
(1)設動點為,設點到直線的距離為,由動點到距離與到直線的距離之比為,利用直接法求出點的軌跡;又,的最小值即為點到直線的距離;
(2)假設存在滿足題意的定點,設,設直線的方程為, ,,由消去,得,利用韋達定理以及,得直線與的斜率和為零,建立方程求解即可.
(1)設動點,設點到直線的距離為,
由已知,可得,
化簡得到軌跡的方程為:,
所以,的最小值即為點到直線的距離,最小值為3;
(2)假設存在滿足題意的定點,設,設直線的方程為, ,,
由消去,得,
由直線過橢圓內一點作直線,故,
由韋達定理得:
,,
由,得直線與的斜率和為零,所以有:
,
,
故:,,
所以存在定點,當直線斜率不存在時定點也符合題意,
綜上所述,定點.
科目:高中數學 來源: 題型:
【題目】如圖為我國數學家趙爽(約3世紀初)在為《周牌算經》作注時驗證勾股定理的示意圖,現(xiàn)在提供6種不同的顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則,區(qū)域涂同色的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,下述四個結論:
①是偶函數;
②的最小正周期為;
③的最小值為0;
④在上有3個零點
其中所有正確結論的編號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】10月1日,某品牌的兩款最新手機(記為型號,型號)同時投放市場,手機廠商為了解這兩款手機的銷售情況,在10月1日當天,隨機調查了5個手機店中這兩款手機的銷量(單位:部),得到下表:
手機店 |
|
|
|
|
|
型號手機銷量 | 6 | 6 | 13 | 8 | 11 |
型號手機銷量 | 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日當天,從,這兩個手機店售出的新款手機中各隨機抽取1部,求抽取的2部手機中至少有一部為型號手機的概率;
(Ⅱ)現(xiàn)從這5個手機店中任選3個舉行促銷活動,用
(III)經測算,型號手機的銷售成本(百元)與銷量(部)滿足關系.若表中型號手機銷量的方差,試給出表中5個手機店的型號手機銷售成本的方差的值.(用表示,結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4-4:坐標系與參數方程)
已知圓的參數方程為(,為參數),將圓上所有點的橫坐標伸長到原來的倍,縱坐標不變得到曲線;以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)設為曲線上的動點,求點與曲線上點的距離的最小值,并求此時點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件,為激發(fā)大家的學習興趣,他們推出了“解數學題獲取軟件激活碼”的活動,這款軟件的激活碼為下列數學問題的答案:已知數列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一項是,接下來的兩項是,再接下來的三項是,……,以此類推,求滿足如下條件的最小整數且該數列的前項和為2的整數冪,那么該軟件的激活碼是________。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com