在x∈上,函數(shù)f(x)=x2+px+q與在同一點取得相同的最小值,那么f(x)在上的最大值是
[     ]
A.
B.4
C.8
D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)•f(y)(x,y∈R),且當x>0時,f(x)>1;f(2)=4.
(Ⅰ)求f(1),f(-1)的值;    
(Ⅱ)證明:f(x)是單調(diào)遞增函數(shù);
(III) 若f(x2-ax+a)≥
2
對任意x∈(1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:①函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;②f(x+2)=-f(x);③f(x)在[-2,0]上是增函數(shù).
下列關(guān)于f(x)的命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于直線x=2對稱;
③函數(shù)f(x)在[0,1]上是增函數(shù);
④函數(shù)f(x)在[2,4]上是減函數(shù);
⑤f(4)=f(0).
其中真命題是
①②④⑤
①②④⑤
(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù),對任意x1,x2∈R,都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
,則稱函數(shù)f(x)是R上的凸函數(shù).已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)求證:當a<0時,函數(shù)f(x)是凸函數(shù);
(2)對任意x∈(0,1],f(x)≥-1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=kx+b(k,b為常數(shù)),使得f(x)≥g(x)對一切實數(shù)x都成立,則稱g(x)為函數(shù)f(x)的一個“承托函數(shù)”.現(xiàn)有如下命題:
①g(x)=2x為函數(shù)f(x)=2x的一個承托函數(shù);
②若g(x)=kx-1為函數(shù)f(x)=xlnx的一個承托函數(shù),則實數(shù)k的取值范圍是[1,+∞);
③定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
④對給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個.
其中正確的命題是

查看答案和解析>>

科目:高中數(shù)學 來源:模擬題 題型:解答題

設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x2+a3x+a4(其中ai∈R,i=0,1,2,3,4),當x=-1時,f(x)取得極大值,并且函數(shù)y=f(x+1)的圖象關(guān)于點(-1,0)對稱,
(1)求f(x)的表達式;
(2)試在函數(shù)f(x)的圖象上求兩點,使這兩點為切點的切線互相垂直,且切點的橫坐標都在區(qū)間上;
(3)若,求證:。

查看答案和解析>>

同步練習冊答案