在復(fù)平面內(nèi),復(fù)數(shù)z=(1+2i)(1-i)對應(yīng)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:直接化簡復(fù)數(shù)z,然后求出對應(yīng)點的坐標(biāo),則答案可求.
解答: 解:∵z=(1+2i)(1-i)=1-i+2i-2i2=3+i,
∴復(fù)數(shù)z對應(yīng)的點的坐標(biāo)為(3,1).
∴復(fù)數(shù)z對應(yīng)的點位于第一象限.
故選:A.
點評:本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax2+2x+1在[-3,2]上有最大值4,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,錯誤的是( 。
A、過平面α外一點可以作無數(shù)條直線與平面α平行
B、與同一個平面所成的角相等的兩條直線必平行
C、若直線l垂直平面α內(nèi)的兩條相交直線,則直線l必垂直平面α
D、垂直于同一個平面的兩條直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(x1,y1)、N(x2,y2)的坐標(biāo)滿足不等式組
x≥0
y≥0
x+2y≤6
3x+y≤12
,若
a
=(1,-1),則
MN
a
 的取值范圍是( 。
A、[-3,3]
B、[-4,4]
C、[-6,6]
D、[-7,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足
x>0
2x-y+1≤0
x-y+3≥0
,則
y
x
的取值范圍是(  )
A、[1,+∞)
B、[2,+∞)
C、[
3
,+∞)
D、[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(z+2)i=5+5i(i為虛數(shù)單位),則z為( 。
A、3+5iB、3-5i
C、-3+5iD、-3-5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有一個直線回歸方程為
y
=2-1.5x,則變量x 增加一個單位( 。
A、y平均增加1.5個單位
B、y 平均增加2個單位
C、y 平均減少1.5個單位
D、y 平均減少2個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2m+2n<4,則點(m,n)必在( 。
A、直線x+y-2=0的左下方
B、直線x+y-2=0的右上方
C、直線x+2y-2=0的右上方
D、直線x+2y-2=0的左下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率與雙曲線
x2
4
-
y2
3
=1的一條漸近線的斜率相等,以原點為圓心,橢圓的短半軸長為半徑的圓與直線sinα•x+cosα•y-1=0相切(α為常數(shù)).
(1)求橢圓C的方程;
(2)若過點M(3,0)的直線與橢圓C相交于A,B兩點,設(shè)P為橢圓上一點,且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點),當(dāng)|
PB
-
PA
|<
3
時,求實數(shù)t取值范圍.

查看答案和解析>>

同步練習(xí)冊答案