【題目】如圖,某種螺帽是由一個半徑為2的半球體挖去一個正三棱錐構成的幾何體,該正三棱錐的底面三角形內(nèi)接于半球底面大圓,頂點在半球面上,則被挖去的正三棱錐體積為_______

【答案】

【解析】

設BC的中點為D,連結AD,過點P作PO平面ABC,角AD于點O,則A0=PO=R=2,AD=3,AB=BC=,由此能求出挖去的正三棱錐的體積,得到答案.

由題意,某中螺帽是由一個半徑為R=2的半球體挖去一個正三棱錐P-ABC構成的幾何體,

該正三棱錐P-ABC的底面三角形ABC內(nèi)接于半球底面的大圓,頂點P在半球面上,

設BC的中點為D,連結AD,過點P作PO平面ABC,交AD于點O,

則AO=PO=R=2,AD=3,AB=BC=,

所以,

所以挖去的正三棱錐的體積為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;

(2)若是函數(shù)的極值點,求函數(shù)上的最大值;

(3)在(2)的條件下,是否存在實數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有個交點?若存在,請求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求曲線在點處的切線方程;

(2)當時,若曲線在直線的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知焦點在x軸上,離心率為的橢圓E的左頂點為A,點A到右準線的距離為6

1)求橢圓E的標準方程;

2)過點A且斜率為的直線與橢圓E交于點B,過點B與右焦點F的直線交橢圓EM點,求M點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

1)函數(shù)處的切線與直線垂直,求實數(shù)a的值;

2)若函數(shù)在定義域上有兩個極值點,,且

①求實數(shù)a的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計兩類成績?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

a

35

50

女生

30

d

70

總計

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認為VR知識的測試成績優(yōu)秀與否與性別有關;

(3)為了宣傳普及VR知識,從該校測試成績獲得優(yōu)秀的同學中按性別采用分層抽樣的方法,隨機選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機抽取2名到校外宣傳,求“到校外宣傳的2名同學中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017高考新課標Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):

年份

2006

2008

2010

2012

2014

需求量/萬噸

236

246

257

276

286

1)利用所給數(shù)據(jù)求年需求量與年份之間的線性回歸方程

2)利用(1)中所求出的線性回歸方程預測該地2018年的糧食需求量.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著工業(yè)化以及城市車輛的增加,城市的空氣污染越來越嚴重,空氣質量指數(shù)一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響.現(xiàn)調查了某市名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:

室外工作

室內(nèi)工作

合計

有呼吸系統(tǒng)疾病

無呼吸系統(tǒng)疾病

合計

(Ⅰ)補全列聯(lián)表;

(Ⅱ)你是否有的把握認為感染呼吸系統(tǒng)疾病與工作場所有關;

(Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個容量為的樣本,將該樣本看成一個總體,從中隨機的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.

臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習冊答案