【題目】設(shè)函數(shù)

(1)求的單調(diào)區(qū)間;

(2)證明:曲線不存在經(jīng)過原點(diǎn)的切線.

【答案】(1時(shí), 在區(qū)間內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減; 時(shí), 內(nèi)單調(diào)遞增;(2)證明見解析.

【解析】試題分析:(1)研究單調(diào)區(qū)間,先求導(dǎo)數(shù),接著研究的正負(fù),按分類可得結(jié)論;(2)否定性命題,可用反證法,即假設(shè)曲線在點(diǎn)處的切線經(jīng)過原點(diǎn),則,即,下面只要證明這個(gè)方程無實(shí)數(shù)解即可,這又要化簡此方程,然后用導(dǎo)數(shù)研究函數(shù)得結(jié)論.

試題解析:(1的定義域?yàn)?/span>.

,得,

當(dāng),即時(shí), ,內(nèi)單調(diào)遞增,

當(dāng),即時(shí),由解得

, ,且,

在區(qū)間內(nèi), ,在內(nèi), ,

在區(qū)間內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減.

2)假設(shè)曲線在點(diǎn)處的切線經(jīng)過原點(diǎn),

則有,即

化簡得: *

,則,

,解得.

當(dāng)時(shí), ,當(dāng)時(shí), ,

的最小值,即當(dāng)時(shí), .

由此說明方程(*)無解,曲線沒有經(jīng)過原點(diǎn)的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12件同類產(chǎn)品中(其中10件正品,2件次品),任意抽取6件產(chǎn)品,下列說法中正確的是(  )

A. 抽出的6件產(chǎn)品必有5件正品,1件次品

B. 抽出的6件產(chǎn)品中可能有5件正品,1件次品

C. 抽取6件產(chǎn)品時(shí),逐個(gè)不放回地抽取,5件是正品,6件必是次品

D. 抽取6件產(chǎn)品時(shí),不可能抽得5件正品,1件次品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機(jī)器的同時(shí)購買的易損零件數(shù)

I的分布列;

II若要求,確定的最小值;

III以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定函數(shù),若對于定義域中的任意,都有恒成立,則稱函數(shù)為“爬坡函數(shù)”

1證明:函數(shù)是爬坡函數(shù);

2若函數(shù)是爬坡函數(shù),求實(shí)數(shù)m的取值范圍;

3若對任意的實(shí)數(shù)b,函數(shù)都不是爬坡函數(shù),求實(shí)數(shù)c的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是公理的是

A. 在空間中,如果兩個(gè)角的兩條邊對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)

B. 如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直

C. 平行于同一條直線的兩條直線平行

D. 如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)是圓上的點(diǎn),是線段的中點(diǎn)

求點(diǎn)的軌跡的方程;

過點(diǎn)的直線和軌跡有兩個(gè)交點(diǎn)不重合,,求直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過500件.

(1)設(shè)一次訂購量為件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;

(2)當(dāng)銷售商一次訂購多少件服裝時(shí),該服裝廠獲得的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求不等式a2x1>ax+2a>0,且a1)中x的取值范圍(用集合表示).

(2)已知是定義在R上的奇函數(shù),且當(dāng)時(shí), ,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝國慶,某中學(xué)團(tuán)委組織了歌頌祖國,愛我中華知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績成績均為整數(shù)分成六段,,,后畫出如圖的部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

2估計(jì)這次考試的及格率60分及以上為及格和平均分;

查看答案和解析>>

同步練習(xí)冊答案