【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足sin2B+sin2C=sin2A+2sinBsinCsin(B+C). (Ⅰ)求角A的大;
(Ⅱ)若a=2,求△ABC面積的最大值.
【答案】解:(Ⅰ)sin2B+sin2C=sin2A+2sinBsinCsin(B+C), 由正弦定理可得 b2+c2=a2+2bcsinA,
由余弦定理可得 b2+c2﹣a2=2bcsinA,
∴cosA=sinA,
∴tanA=1,
∵A∈(0,π),
∴A=
(Ⅱ)由(Ⅰ)可得b2+c2=4+ bc,
∵b2+c2≥2bc,
∴4+ bc≥2bc,當(dāng)且僅當(dāng)b=c時取等號,
即bc≤ =4+2 ,
∴S△ABC= bcsinA= bc≤ +1,
∴△ABC面積的最大值 +1.
【解析】(1)由條件利用正弦定理可得 b2+c2=a2+2bcsinA,再由余弦定理可得cosA=sinA,即可求出A,(Ⅱ)根據(jù)基本不等式求出bc≤4+2 ,再根據(jù)三角形的面積公式計算即可
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
(1)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD//FE,∠AFE=60,且平面ABCD⊥平面ADEF,AF=FE=AB==2,點G為AC的中點.
(1)求證:EG//平面ABF;
(2)求三棱錐B-AEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在以為直徑的半圓周上,有異于的六個點,直徑上有異于的四個點.則:
(1)以這12個點(包括)中的4個點為頂點,可作出多少個四邊形?
(2)以這10個點(不包括)中的3個點為頂點,可作出多少個三角形?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線C:x2=4y,點P是C的準(zhǔn)線l上的動點,過點P作C的兩條切線,切點分別為A,B,則△AOB面積的最小值為( )
A.
B.2
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關(guān)關(guān)系(所謂兩株作物”相近“是指它們的直線距離不超過1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時,該作物的年收獲量的相關(guān)數(shù)據(jù)如下:
X | 1 | 2 | 3 | 5 | 6 | 7 |
y | 60 | 55 | 53 | 46 | 45 | 41 |
(Ⅰ)求該作物的年收獲量y關(guān)于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每一個小正方形的面積為1,若在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收獲量以線性回歸方程計算所得數(shù)據(jù)為依據(jù))
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計分別為 = = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,給出如下命題:
①是所在平面內(nèi)一定點,且滿足,則是的垂心;
②是所在平面內(nèi)一定點,動點滿足,,則動點一定過的重心;
③是內(nèi)一定點,且,則;
④若且,則為等邊三角形,
其中正確的命題為_____(將所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)是否存在這樣的實數(shù),使對所有的均成立?若存在,求出適合條件的實數(shù)的值或范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動點,動點滿足(且),點的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)在以坐標(biāo)原點為極點,以軸的正半軸為極軸的極坐標(biāo)系中, 點的極坐標(biāo)為,射線與的異于極點的交點為,已知面積的最大值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com