已知三條直線l1:4x+y-4=0,l2:mx+y=0,l3:2x-3my-2=0,問(wèn)這三條直線能否圍成直角三角形,如果能,求出m的值.
考點(diǎn):直線的一般式方程
專(zhuān)題:直線與圓
分析:根據(jù)題意,討論直線l2⊥l3,或l1⊥l2,或l3⊥l1時(shí),三條直線能?chē)芍苯侨切,求出?duì)應(yīng)的m值即可.
解答: 解:畫(huà)出圖形,如圖所示,;
直線l1:4x+y-4=0是定直線,
l2:mx+y=0是過(guò)原點(diǎn)的直線,
l3:2x-3my-2=0是過(guò)定點(diǎn)(1,0)的直線,
當(dāng)l2⊥l3,即m=0時(shí),l2:y=0,l3:x-1=0,與l1三條直線能?chē)芍苯侨切危?br />當(dāng)l1⊥l2,即m=-
1
4
時(shí),l2:x-4y=0,l3:8x+3y-8=0,與l1三條直線能?chē)芍苯侨切危?br />當(dāng)l3⊥l1,即m=
8
3
時(shí),l2:8x+3y=0,l3:x-4y-1=0,與l1三條直線能?chē)芍苯侨切危?br />綜上,當(dāng)m=0,或-
1
4
,或
8
3
時(shí),三條直線能?chē)芍苯侨切危?
點(diǎn)評(píng):本題考查了平面中兩條直線的垂直問(wèn)題,解題時(shí)應(yīng)根據(jù)題意,尋找解題的合理?xiàng)l件是什么,從而解得答案,是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R||x|≤2},B={x|
1
x-1
≥1},則A∩B=( 。
A、[1,2]
B、[-2,1)
C、(1,2]
D、[-2,1]∪{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,△ABE為等腰三角形,AE=BE,平面ABCD⊥平面ABE,動(dòng)點(diǎn)F在校CE上,無(wú)論點(diǎn)F運(yùn)動(dòng)到何處時(shí),總有BF⊥AE.
(Ⅰ)試判斷平面ADE與平面BCE是否垂直,并證明你的結(jié)論;
(Ⅱ)求二面角D-CE-A的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=x2-4ax-3(0≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R,比較a2+3b2與b(2b-a)的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)log1227=a,求證:log616=
4(3-a)
3+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
3
sinx-cosx,求該函數(shù)周期,最大值,及取最大值時(shí)的x的取值集合和它的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊長(zhǎng)為a、b、c,且滿足
an+bn=cn
,其中n是大于2的整數(shù),問(wèn)△ABC是何種三角形,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,a1=x-2,a2=x,a3=2x+1,則該數(shù)列的通項(xiàng)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案