【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
【答案】(1)見解析(2)
【解析】(1)∵PC⊥平面ABCD,AC平面ABCD,∴AC⊥PC.∵AB=2,AD=CD=1,∴AC=BC=.
∴AC2+BC2=AB2.∴AC⊥BC.
又BC∩PC=C,∴AC⊥平面PBC.
∵AC平面EAC,
∴平面EAC⊥平面PBC.
(2)如圖,以點C為原點, , , 分別為x軸、y軸、z軸正方向,建立空間直角坐標系,
則C(0,0,0),A(1,1,0),B(1,-1,0),設P(0,0,a)(a>0),
則E, =(1,1,0), =(0,0,a), =.取m=(1,-1,0),則m·=m·=0,m為面PAC的法向量.設n=(x,y,z)為面EAC的法向量,則n·=n·=0,即取x=a,y=-a,z=-2,則n=(a,-a,-2),依題意,|cos〈m,n〉|===,則a=2.于是n=(2,-2,-2), =(1,1,-2).設直線PA與平面EAC所成角為θ,則sinθ=|cos〈,n〉|==,即直線PA與平面EAC所成角的正弦值為
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對數的底數).
(1)判斷f(x)的單調性;
(2)當f(x)<0在(0,+∞)上恒成立時,求a的取值范圍;
(3)證明:當x∈(0,+∞)時, (1+x) <e.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對應年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關系,請用相關系數加以說明;
(2)建立關于的回歸方程,預測年該企業(yè)污水凈化量;
(3)請用數據說明回歸方程預報的效果.
附注: 參考數據:;
參考公式:相關系數,回歸方程中斜率和截距的最小;
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關.
平均車速超過 100km/h人數 | 平均車速不超過 100km/h人數 | 合計 | |
男性駕駛員人數 | |||
女性駕駛員人數 | |||
合計 |
(2)以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數為,若每次抽取的結果是相互獨立的,求的分布列和數學期望.
參考公式與數據: ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,G是PB的中點.
(1)根據三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com