【題目】某處有一塊閑置用地,如圖所示,它的邊界由圓O的一段圓弧和兩條線段,構成.已知圓心O在線段上,現(xiàn)測得圓O半徑為2百米,,.現(xiàn)規(guī)劃在這片閑置用地內劃出一片梯形區(qū)域用于商業(yè)建設,該梯形區(qū)域的下底為,上底為,點M在圓弧(點D在圓弧上,且)上,點N在圓弧上或線段上.設.
(1)將梯形的面積表示為的函數(shù);
(2)當為何值時,梯形的面積最大?求出最大面積.
【答案】(1)(2)當時,梯形的面積取得最大值平方百米.
【解析】
(1)結合點N的位置分析角相應的取值范圍,分情況討論即可求解;
(2)根據(jù)(1)的函數(shù),利用導數(shù)研究單調性即可求解函數(shù)的最大值.
(1)因為點M在圓弧上,,當點M分別與點A,D重合時,梯形不存在,
所以.
過點B作,且交圓弧于點,連結,因為,所以.
由垂徑定理可知垂直平分,
因此,,
因此,當時,點N在圓弧上,當上時,點N在線段上.
設,
①當時,因為,所以.
又,所以.
由垂徑定理可知,在中,,
,
因為,所以在中,,,
所以梯形的面積
;
②當時,因為,,,
所以四邊形為矩形,故,
所以梯形的面積
.
綜上,
(2)①當時,,
.
因為時,,
所以,
故在上單調遞減,.
②當時,,
.
因為時,,
所以,
故在上單調遞增,.
綜上,當且僅當時,梯形的面積取得最大值平方百米.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為(a或t為參數(shù)).以O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ(cosθsinθ)=1.
(1)當t為參數(shù),α時,判斷曲線C與直線l的位置關系;
(2)當α為參數(shù),t=2時,直線l與曲線C交于A,B兩點,設P(1,0),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣,由此催生了一批外賣點餐平臺.已知某外賣平臺的送餐費用與送餐距離有關(該平臺只給5千米范圍內配送),為調査送餐員的送餐收入,現(xiàn)從該平臺隨機抽取100名點外賣的用戶進行統(tǒng)計,按送餐距離分類統(tǒng)計結果如表:
送餐距離(千米) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
頻數(shù) | 15 | 25 | 25 | 20 | 15 |
以這100名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.
(1)若某送餐員一天送餐的總距離為100千米,試估計該送餐員一天的送餐份數(shù);(四舍五入精確到整數(shù),且同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
(2)若該外賣平臺給送餐員的送餐費用與送餐距離有關,規(guī)定2千米內為短距離,每份3元,2千米到4千米為中距離,每份7元,超過4千米為遠距離,每份12元.記X為送餐員送一份外賣的收入(單位:元),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網(wǎng)上調查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):
現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.
(1)求的值,并填寫下表(2000位參與投票分數(shù)和人數(shù)分布統(tǒng)計);
滿意程度(分數(shù)) | |||||
人數(shù) |
(2)求市民投票滿意程度的平均分(各分數(shù)段取中點值);
(3)若滿意程度在的5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年4月8日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復工復產(chǎn)復市,但是仍然不能麻痹大意,仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區(qū)管理工作,結合復工復產(chǎn)復市的實際需要,某小區(qū)物業(yè)提供了,兩種小區(qū)管理方案,為了了解哪一種方案最為合理有效,物業(yè)隨機調查了50名男業(yè)主和50名女業(yè)主,每位業(yè)主對,兩種小區(qū)管理方案進行了投票(只能投給一種方案),得到下面的列聯(lián)表:
方案 | 方案 | |
男業(yè)主 | 35 | 15 |
女業(yè)主 | 25 | 25 |
(1)分別估計,方案獲得業(yè)主投票的概率;
(2)判斷能否有95%的把握認為投票選取管理方案與性別有關.
附:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、E、F為山腳兩側共線的三點,在山頂A處測得這三點的俯角分別為、、,計劃沿直線BF開通穿山隧道,現(xiàn)已測得BC、DE、EF三段線段的長度分別為3、1、2.
(1)求出線段AE的長度;
(2)求出隧道CD的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中,四邊形ABCD是邊長等于2的菱形,,平面ABCD,O,E分別是,AB的中點,AC交DE于點H,點F為HC的中點
(1)求證:平面;
(2)若OF與平面ABCD所成的角為60°,求三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】CES是世界上最大的消費電子技術展,也是全球最大的消費技術產(chǎn)業(yè)盛會.2020CES消費電子展于2020年1月7日—10日在美國拉斯維加斯舉辦.在這次CES消費電子展上,我國某企業(yè)發(fā)布了全球首款彩色水墨屏閱讀手機,驚艷了全場.若該公司從7名員工中選出3名員工負責接待工作(這3名員工的工作視為相同的工作),再選出2名員工分別在上午、下午講解該款手機性能,若其中甲和乙至多有1人負責接待工作,則不同的安排方案共有__________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,在等腰梯形中,,,.,交于點.將沿線段折起,使得點在平面內的投影恰好是點,如圖.
(1)若點為棱上任意一點,證明:平面平面.
(2)在棱上是否存在一點,使得三棱錐的體積為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com