分析 由已知數(shù)列遞推式結合對數(shù)的運算性質可得數(shù)列{an}是公比為3的等比數(shù)列,由已知a2+a4+a6=9,結合等比數(shù)列的性質可得a5+a7+a9的值,代入${log_{\frac{1}{3}}}({a_5}+{a_7}+{a_9})$得答案.
解答 解:由${log_3}a{\;}_n+1={log_3}{a_{n+1}},({n∈{N^+}})$,得log3(3an)=log3an+1,
∴an+1=3an,且an>0,
∴數(shù)列{an}是公比為3的等比數(shù)列,
又a2+a4+a6=9,∴${a}_{5}+{a}_{7}+{a}_{9}=({a}_{2}+{a}_{4}+{a}_{6})•{q}^{3}$=35.
∴${log_{\frac{1}{3}}}({a_5}+{a_7}+{a_9})$=$lo{g}_{\frac{1}{3}}{3}^{5}=-5$.
故答案為:-5.
點評 本題考查數(shù)列遞推式,考查了對數(shù)的運算性質,考查等比數(shù)列的性質,屬中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y={x^{-\frac{1}{2}}}$ | B. | y=x-2 | C. | $y={x^{\frac{1}{2}}}$ | D. | y=x2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(2)<f(-\frac{3}{2})<f(-1)$ | B. | $f(-\frac{3}{2})<f(-1)<f(2)$ | C. | $f(2)<f(-1)<f(-\frac{3}{2})$ | D. | $f(-1)<f(-\frac{3}{2})<f(2)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-1 | B. | $y=-\frac{1}{2}$ | C. | x=-1 | D. | $x=-\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com