【題目】2018年森林城市建設(shè)座談會在深圳舉行.會上宣讀了國家森林城市稱號批準(zhǔn)決定,并舉行授牌儀式,滕州市榜上有名,被正式批準(zhǔn)為國家森林城市”.為進(jìn)一步推進(jìn)國家森林城市建設(shè),我市準(zhǔn)備制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列兩個(gè)條件:

①每年用于風(fēng)景區(qū)改造的費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年用于風(fēng)景區(qū)改造的費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用25%.若每年改造生態(tài)環(huán)境的總費(fèi)用至少1億元,至多4億元;請你分析能否采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.

【答案】能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案,理由見解析

【解析】

利用導(dǎo)數(shù)證得上遞增,滿足條件①.構(gòu)造函數(shù),利用導(dǎo)數(shù)求得滿足條件②.由此判斷出能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.

.

∴當(dāng)時(shí),函數(shù)是增函數(shù),滿足條件①.

設(shè),.

.

,得.

當(dāng)變化時(shí),的變化情況,如下表:

1

2

4

0

+

21%

遞減

極小值16%

遞增

24%

當(dāng)時(shí),有最小值為,

當(dāng)時(shí),,

當(dāng)時(shí),,滿足條件②.

所以能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生考試中答對但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結(jié)果正確,無明顯推理錯(cuò)誤,但語言不規(guī)范、缺少必要文字說明、卷面字跡不清、得分要點(diǎn)缺失等,記此類解答為類解答”.為評估此類解答導(dǎo)致的失分情況,某市教研室做了一項(xiàng)試驗(yàn):從某次考試的數(shù)學(xué)試卷中隨機(jī)抽取若干屬于類解答的題目,掃描后由近百名數(shù)學(xué)老師集體評閱,統(tǒng)計(jì)發(fā)現(xiàn),滿分12分的題,閱卷老師所評分?jǐn)?shù)及各分?jǐn)?shù)所占比例大約如下表:

教師評分(滿分12分)

11

10

9

各分?jǐn)?shù)所占比例

某次數(shù)學(xué)考試試卷評閱采用雙評+仲裁的方式,規(guī)則如下:兩名老師獨(dú)立評分,稱為一評和二評,當(dāng)兩者所評分?jǐn)?shù)之差的絕對值小于等于1分時(shí),取兩者平均分為該題得分;當(dāng)兩者所評分?jǐn)?shù)之差的絕對值大于1分時(shí),再由第三位老師評分,稱之為仲裁,取仲裁分?jǐn)?shù)和一、二評中與之接近的分?jǐn)?shù)的平均分為該題得分;當(dāng)一、二評分?jǐn)?shù)和仲裁分?jǐn)?shù)差值的絕對值相同時(shí),取仲裁分?jǐn)?shù)和前兩評中較高的分?jǐn)?shù)的平均分為該題得分.(假設(shè)本次考試閱卷老師對滿分為12分的題目中的類解答所評分?jǐn)?shù)及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).

1)本次數(shù)學(xué)考試中甲同學(xué)某題(滿分12分)的解答屬于類解答,求甲同學(xué)此題得分的分布列及數(shù)學(xué)期望;

2)本次數(shù)學(xué)考試有6個(gè)解答題,每題滿分均為12分,同學(xué)乙6個(gè)題的解答均為類解答,記該同學(xué)6個(gè)題中得分為的題目個(gè)數(shù)為,,,計(jì)算事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動支付公司從我市移動支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計(jì)

15

12

13

7

8

45

(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“移動支付活躍用戶”與性別有關(guān)?

(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達(dá)人”,視頻率為概率,在我市所有“移動支付達(dá)人”中,隨機(jī)抽取4名用戶.

①求抽取的4名用戶中,既有男“移動支付達(dá)人”又有女“移動支付達(dá)人”的概率;

②為了鼓勵(lì)男性用戶使用移動支付,對抽出的男“移動支付達(dá)人”每人獎勵(lì)300元,記獎勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,橢圓上一點(diǎn)到橢圓兩焦點(diǎn)距離之和為,如圖,為坐標(biāo)原點(diǎn),平行與的直線l交橢圓于不同的兩點(diǎn)、

1)求橢圓方程;

2)若的橫坐標(biāo)為,求面積的最大值;

3)當(dāng)在第一象限時(shí),直線x軸于,,若PEPF,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是數(shù)列的前項(xiàng)和,,數(shù)列中,,且.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求的前項(xiàng)和

3)證明:對一切,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知點(diǎn)A是拋物線的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)B為拋物線的焦點(diǎn),P在拋物線上且滿足,當(dāng)取最大值時(shí),點(diǎn)P恰好在以AB為焦點(diǎn)的雙曲線上,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PAy軸于M直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點(diǎn),,求證為定值

查看答案和解析>>

同步練習(xí)冊答案