【題目】已知四棱錐的底面為正方形,且該四棱錐的每條棱長均為,設(shè)BC,CD的中點(diǎn)分別為EF,點(diǎn)G在線段PA上,如圖.

1)證明:;

2)當(dāng)平面PEF時,求直線GC和平面PEF所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)設(shè),由正棱錐的性質(zhì)可知PO⊥平面ABCD,得到POEF,再由ABCD是正方形結(jié)合EF為△BCD的中位線,可得EFAC,得到EF⊥平面PAC,進(jìn)一步得到EFGC

2)分別以PB,OC,OPxy,z軸建立空間直角坐標(biāo)系,求出A,P,E,F的坐標(biāo),設(shè),且,其中,求得,設(shè)平面PEF的一個法向量為,求得,結(jié)合BG∥平面PEF,利用數(shù)量積為0求得λ,進(jìn)一步得到,又,求出直線GC的法向量為.設(shè)GC和平面PEF所成角為,再由求解.

1)證明:由已知為正四棱錐,設(shè)ACBD交于點(diǎn)O,

由正棱錐的性質(zhì)可知平面ABCD,所以,

由于正方形ABCD滿足EF的中位線,故,所以

所以平面PAC,而平面PAC,所以.

2)分別以OB,OC,OP為坐標(biāo)軸建立如圖坐標(biāo)系,

此時,,.

設(shè),且,其中,

,

設(shè)平面PEF的法向量為,

由于,

解得,

平面PEF

解得,此時,由于,故.

所以直線GC的方向向量,

設(shè)GC和平面PEF所成角為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,、是兩個垃圾中轉(zhuǎn)站,的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個要求(、、可看成三個點(diǎn)):①垃圾發(fā)電廠到兩個垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)到直線的距離要盡可能大).現(xiàn)估測得、兩個中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè)

1)求(用的表達(dá)式表示);

2)垃圾發(fā)電廠該如何選址才能同時滿足上述要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論的單調(diào)性;

恒成立,求實(shí)數(shù)a的取值范圍;

當(dāng)時,設(shè)為自然對數(shù)的底若正實(shí)數(shù)滿足,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,側(cè)面PAD⊥底面ABCD,∠PAD90°CDAB,∠BAD90°,且AB3CD3PAAD3.

1)求證:BDPC

2)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.

(1)求的值,并計算完成年度任務(wù)的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了,,,四件獎品(每扇門里僅放一件).甲同學(xué)說:1號門里是,3號門里是;乙同學(xué)說:2號門里是,3號門里是;丙同學(xué)說:4號門里是,2號門里是;丁同學(xué)說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos xC2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價格定為件.

1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);

2)促銷費(fèi)用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個月時污染度為,整治后前四個月的污染度如下表:

月數(shù)

污染度

污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個函數(shù)模擬從整治后第一個月開始工廠的污染模式:,,其中表示月數(shù),、、分別表示污染度.

1)問選用哪個函數(shù)模擬比較合理,并說明理由;

2)若以比較合理的模擬函數(shù)預(yù)測,整治后有多少個月的污染度不超過

查看答案和解析>>

同步練習(xí)冊答案