Processing math: 6%
10.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2,a4+2,a5成等差數(shù)列,a1=2,則an=2n

分析 設(shè)各項(xiàng)均為正數(shù),公比為q的等比數(shù)列{an},運(yùn)用等差數(shù)列的中項(xiàng)的性質(zhì)和等比數(shù)列的通項(xiàng)公式,解方程可得公比,進(jìn)而得到所求通項(xiàng)公式.

解答 解:設(shè)各項(xiàng)均為正數(shù),公比為q的等比數(shù)列{an},
a2,a4+2,a5成等差數(shù)列,a1=2,
可得2(a4+2)=a2+a5
即2(2q3+2)=2q+2q4,
即(q-2)(1+q3)=0,
解得q=2(-1舍去).
則an=a1qn-1=2•2n-1=2n
故答案為:2n

點(diǎn)評(píng) 本題考查等差數(shù)列的中項(xiàng)的性質(zhì)和等比數(shù)列的通項(xiàng)公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)向量a平行,向量\overrightarrow{λ}\overrightarrow{a}+\overrightarrow\overrightarrow{a}+2\overrightarrow平行,則實(shí)數(shù)λ=\frac{1}{2}.(用數(shù)字填寫(xiě)答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.7+3\sqrt{5}與7-3\sqrt{5}的等比中項(xiàng)為( �。�
A.7B.2C.±2D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=2alnx+x2-2x(a∈R)在定義域上為單調(diào)遞增函數(shù),則a的最小值是( �。�
A.\frac{1}{4}B.\frac{1}{2}C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知2sinθ=1+cosθ,則tanθ=( �。�
A.-\frac{4}{3}或0B.\frac{4}{3}或0C.-\frac{4}{3}D.\frac{4}{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算下列各式:
(1)(0.027){\;}^{\frac{1}{3}}-(6\frac{1}{4}{\;}^{-\frac{1}{2}}+256{\;}^{\frac{3}{4}}+(2\sqrt{2}{\;}^{\frac{2}{3}}0
(2)已知a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3,求a2+a-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一個(gè)三角形三邊長(zhǎng)分別為2cm、3cm、4cm,這個(gè)三角形最大角的余弦值是-\frac{1}{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.己知函數(shù)f(x)=lnx-ax+l,其中a∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),斜率為k的直線l與函數(shù)f(x)的圖象交于兩點(diǎn)A(x1,y1),B(x2,y2),其中x1<x2,證明:{x_1}<\frac{1}{k+1}<{x_2}
(3)是否存在k∈Z,使得f(x)+ax-2>k(1一\frac{2}{x})對(duì)任意x>l恒成立?若存在,請(qǐng)求出k的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.圓{(x+\frac{1}{2})^2}+{(y+1)^2}=\frac{81}{16}與圓{(x-sinθ)^2}+{(y-1)^2}=\frac{1}{16}(θ為銳角)的位置關(guān)系是(  )
A.相離B.外切C.內(nèi)切D.相交

查看答案和解析>>

同步練習(xí)冊(cè)答案