【題目】已知函數(shù),則函數(shù)的零點個數(shù)為( )(是自然對數(shù)的底數(shù))

A.6B.5C.4D.3

【答案】B

【解析】

利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),如單調(diào)性,函數(shù)值的變化趨勢和,函數(shù)的極值.再研究方程的解的個數(shù),即直線與函數(shù)的公共點的的取值,從而利用函數(shù)的性質(zhì)求得零點個數(shù).

時,是增函數(shù),,

時,,,顯然

,

作出的圖象,如圖,是增函數(shù),是減函數(shù)

它們有一個交點,設(shè)交點橫坐標(biāo)為,易得,

時,,時,,,

所以上遞減,在上遞增,的極小值,也是在時的最小值.,即,,

時,時,.作出的大致圖象,作直線,如圖,的圖象有兩個交點,即有兩個解,

時,,,由,而時,,,所以直線處相切.即時方程有一個解

,令,則,由上討論知方程有三個解:()

有一個解,都有兩個解,所以5個解,

即函數(shù)5個零點.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若動點到兩點的距離之比為.

1)求動點的軌跡的方程;

2)若為橢圓上一點,過點作曲線的切線與橢圓交于另一點,求面積的取值范圍(為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,ADBCABBC,BDDC,點EBC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.

AD1,二面角CABD的平面角的正切值為,求二面角BADE的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為且滿足,當(dāng)時,.

1)判斷上的單調(diào)性并加以證明;

2)若方程有實數(shù)根,則稱為函數(shù)的一個不動點,設(shè)正數(shù)為函數(shù)的一個不動點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,平面平面,且.

1)在線段上是否存在一點,使平面,證明你的結(jié)論;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的左右頂點為,上下頂點為,菱形的內(nèi)切圓的半徑為,橢圓的離心率為.

1)求橢圓的方程;

2)設(shè)是橢圓上關(guān)于原點對稱的兩點,橢圓上一點滿足,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)求曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點,點的坐標(biāo)為(3,1),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以正四棱錐VABCD的底面中心O為坐標(biāo)原點建立空間直角坐標(biāo)系Oxyz,其中OxBCOyAB,EVC的中點.正四棱錐的底面邊長為2a,高為h,且有cos,〉=-.

1)求的值;

2)求二面角B-VC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體有五條棱長為3,且外接球半徑為2.動點P在四面體的內(nèi)部或表面,P到四個面的距離之和記為s.已知動點P,兩處時,s分別取得最小值和最大值,則線段長度的最小值為______.

查看答案和解析>>

同步練習(xí)冊答案