A. | (-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3) | B. | (-$\frac{π}{2}$,-1)∪(0,1)∪($\frac{π}{2}$,3) | C. | (-3,-1)∪(0,1)∪(1,3) | D. | (-3,-$\frac{π}{2}$)∪(0,1)∪(1,3) |
分析 由已知中f(x)是定義在(-3,3)上的奇函數(shù),當(dāng)0<x<3時,f(x)的圖象,我們易得到f(x)<0,及f(x)>0時x的取值范圍,結(jié)合余弦函數(shù)在(-3,3)上函數(shù)值符號的變化情況,我們即可得到不等式f(x)•cosx<0的解集.
解答 解::由圖象可知:
0<x<1時,f(x)<0;
當(dāng)1<x<3時,f(x)>0.
再由f(x)是奇函數(shù),知:
當(dāng)-1<x<0時,f(x)>0;
當(dāng)-3<x<-1時,f(x)<0.
又∵余弦函數(shù)y=cosx
當(dāng)-3<x<-$\frac{π}{2}$,或 $\frac{π}{2}$<x<3時,cosx<0
-$\frac{π}{2}$<x<$\frac{π}{2}$時,cosx>0
∴當(dāng)x∈(-$\frac{π}{2}$-1)∪(0,1)∪( $\frac{π}{2}$,3)時,f(x)•cosx<0
故選B.
點(diǎn)評 此題屬于以余弦函數(shù)與已知函數(shù)的圖象及單調(diào)性為平臺,考查了其他不等式的解法,是一道綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①處 | B. | ②處 | C. | ③處 | D. | ④處 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com