【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面, , , 分別為, 的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求四棱錐的體積和截面的面積.
【答案】(1)見解析(2)
【解析】試題分析:(1)先根據(jù)線面垂直性質(zhì)定理得,而,所以由線面垂直判定定理得平面,即得, 再由等腰三角形性質(zhì)得,因此由線面垂直判定定理得平面,即證得;(2)易得四棱錐的高,再根據(jù)錐體體積公式得四棱錐的體積;要求截面的面積,先確定截面的形狀:由三角形中位線性質(zhì)得,即得,而平面,所以,即四邊形是直角梯形,最后利用直角梯形面積公式求解面積.
試題解析:(Ⅰ)證明:∵是的中點(diǎn), ,∴,
由底面,得,
又,即,
∴平面,∴,∴平面
∴.
(Ⅱ)解:由,得底面直角梯形的面積,
由底面,得四棱錐的高,
所以四棱錐的體積.
由, 分別為, 的中點(diǎn),得,且,
又,故,由(Ⅰ)得平面,又平面,
故,∴四邊形是直角梯形,
在中, , ,
∴截面的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①三點(diǎn)確定一個(gè)平面;
②三條兩兩相交的直線確定一個(gè)平面;
③在空間上,與不共面四點(diǎn)A,B,C,D距離相等的平面恰有7個(gè);
④兩個(gè)相交平面把空間分成四個(gè)區(qū)域.
其中真命題的序號(hào)是 (寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是海面上位于東西方向相距5(3+)海里的兩個(gè)觀測(cè)點(diǎn),現(xiàn)位于A點(diǎn)北偏東45°,B點(diǎn)北偏西60°的D點(diǎn)有一艘輪船發(fā)出求救信號(hào),位于B點(diǎn)南偏西60°且與B點(diǎn)相距20海里的C點(diǎn)的救援船立即即前往營(yíng)救,其航行速度為30海里/小時(shí),該救援船到達(dá)D點(diǎn)需要多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域D,如果存在正實(shí)數(shù)m,使得對(duì)任意x∈D,都有f(x+m)>f(x),則稱f(x)為D上的“m型增函數(shù)”.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=|x﹣a|﹣a(a∈R).若f(x)為R上的“20型增函數(shù)”,則實(shí)數(shù)a的取值范圍是( )
A.a>0
B.a<5
C.a<10
D.a<20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)市民的環(huán)保意識(shí),某市面向全市增招環(huán)保知識(shí)義務(wù)宣傳志愿者,從符合條件的志愿者中隨機(jī)選取名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡(歲)分成五組:第組,第組,第組,第組,第組,得到的頻率分布直方圖(局部)如圖所示.
(1)求第組的頻率,并在圖中補(bǔ)畫直方圖;
(2)從名志愿者中再選出年齡低于歲的志愿者名擔(dān)任主要宣講人,求這名主要宣講人的年齡在不同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=bax , (其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,8),B(3,32)
(1)求f(x)的解析式;
(2)若不等式+1﹣2m≥0在x∈(﹣∞,1]上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)點(diǎn)(0,1)和(1,4),且對(duì)于任意的實(shí)數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)設(shè)g(x)=kx+1,若G(x)=在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O與⊙O′相交于A、B兩點(diǎn),過(guò)A引直線CD,EF分別交兩圓于點(diǎn)C、D、E、F,EC與DF的延長(zhǎng)線相交于點(diǎn)P,求證:∠P+∠CBD=180°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,點(diǎn)滿足.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com