【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,點(diǎn)滿足.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.
【答案】(Ⅰ) (Ⅱ)
【解析】
試題分析:(Ⅰ)直接利用|PF2|=|F1F2|,對(duì)應(yīng)的方程整理后即可求橢圓的離心率e;(Ⅱ)先把直線PF2與橢圓方程聯(lián)立求出A,B兩點(diǎn)的坐標(biāo)以及對(duì)應(yīng)的|AB|兩點(diǎn),進(jìn)而求出|MN|,再利用弦心距,弦長(zhǎng)以及圓心到直線的距離之間的等量關(guān)系,即可求橢圓的方程
試題解析:(Ⅰ)設(shè),.
因?yàn)?/span>,則,,
由,有,即,(舍去)或.
所以橢圓的離心率為.
(Ⅱ) 解.因?yàn)?/span>,所以,.所以橢圓方程為.
直線的斜率,則直線的方程為.
兩點(diǎn)的坐標(biāo)滿足方程組
消去并整理得.則,.
于是 不妨設(shè),.
所以.
于是.
圓心到直線的距離,
因?yàn)?/span>,所以,即,
解得(舍去),或.于是,.
所以橢圓的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面, , , 分別為, 的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求四棱錐的體積和截面的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左焦點(diǎn),若橢圓上存在一點(diǎn),滿足以橢圓短軸為直徑的圓與線段相切于線段的中點(diǎn).
(1)求橢圓的方程;
(2)過(guò)坐標(biāo)原點(diǎn)的直線交橢圓: 于、兩點(diǎn),其中點(diǎn)在第一象限,過(guò)作軸的垂線,垂足為,連結(jié)并延長(zhǎng)交橢圓于,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線a上的所有點(diǎn)到兩條直線m、n的距離都相等,則稱直線a為“m、n的等距線”.在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別是所在棱中點(diǎn),M、N分別為EH、FG中點(diǎn),則在直線MN,EG,F(xiàn)H,B1D中,是“A1D1、AB的等距線”的條數(shù)為( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是棱BC的中點(diǎn).
求證:(1)AD⊥C1D;
(2)A1B∥平面ADC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷售額(萬(wàn)元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關(guān)系,可得回歸方程:,
經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為和,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷售額.
參數(shù)數(shù)據(jù)及公式:,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: 和點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且與圓相切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn)是曲線與軸正半軸的交點(diǎn),點(diǎn), 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的半徑為,圓心在軸正半軸上,直線與圓相切.
(1)求圓的方程;
(2)過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn), 且為時(shí),求: 的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com