【題目】已知,函數(shù),直線l:.
討論的圖象與直線l的交點個數(shù);
若函數(shù)的圖象與直線l:相交于,兩點,證明:.
【答案】(1)見解析(2)見證明
【解析】
根據(jù)函數(shù)與方程的關(guān)系,設(shè),求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性和極值,結(jié)合極值與0的關(guān)系進行判斷即可.
構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),結(jié)合與l的交點坐標(biāo),進行證明即可.
解:由題意,令,
則,
令,解得.
所以在上單調(diào)遞增,
令,解得,所以在上單調(diào)遞減,
則當(dāng)時,函數(shù)取得極小值,同時也是最小值
,
當(dāng),即時,的圖象與直線l無交點,
當(dāng),即時的圖象與直線l只有一個交點.
當(dāng),即時的圖象與直線l有兩個交點.
綜上所述,當(dāng)時,的圖象與直線l無交點;
時的圖象與直線l只有一個交點,時的圖象與直線l有兩個交點.
證明:令,
,
,
,即在上單調(diào)遞增,
,
時,恒成立,
又,
,
,
又
,
在上單調(diào)遞增,
即
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個生產(chǎn)公司投資A生產(chǎn)線500萬元,每萬元可創(chuàng)造利潤萬元,該公司通過引進先進技術(shù),在生產(chǎn)線A投資減少了x萬元,且每萬元的利潤提高了;若將少用的x萬元全部投入B生產(chǎn)線,每萬元創(chuàng)造的利潤為萬元,其中.
若技術(shù)改進后A生產(chǎn)線的利潤不低于原來A生產(chǎn)線的利潤,求x的取值范圍;
若生產(chǎn)線B的利潤始終不高于技術(shù)改進后生產(chǎn)線A的利潤,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的值域為,記函數(shù).
(1)求實數(shù)的值;
(2)存在使得不等式成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程有5個不等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線1過原點O.
(1)若直線l與圓C相切,求直線l的斜率;
(2)若直線l與圓C交于A、B兩點,點P的坐標(biāo)為,若.求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于復(fù)數(shù)的四個命題中,正確的個數(shù)是( )
(1)若,則復(fù)數(shù)對應(yīng)的動點的軌跡是橢圓;
(2)若,則復(fù)數(shù)對應(yīng)的動點的軌跡是雙曲線;
(3)若,則復(fù)數(shù)對應(yīng)的動點的軌跡是拋物線;
(4)若,則的取值范圍是
A.4B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠去年某產(chǎn)品的年產(chǎn)量為100萬只,每只產(chǎn)品的銷售價為10元,固定成本為8元今年,工廠第一次投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本,預(yù)計產(chǎn)量年遞增10萬只,第次投入后,每只產(chǎn)品的固定成本為為常數(shù),且,若產(chǎn)品銷售價保持不變,第次投入后的年利潤為萬元.
(1)求的值,并求出的表達(dá)式;
(2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和C2的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程為,直線l與曲線C1和C2分別交于不同于原點的A,B兩點,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標(biāo)準(zhǔn)是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.
(Ⅰ)求甲乙兩人所付的車費相同的概率;
(Ⅱ)設(shè)甲乙兩人所付的車費之和為隨機變量求的分布列及數(shù)學(xué)期望
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com