已知函數(shù)f(x)=log
1
2
x
與函數(shù)g(x)的圖象關(guān)于y=x對(duì)稱,
(1)若g(a)g(b)=2,且a<0,b<0,則
4
a
+
1
b
的最大值為
-9
-9

(2)設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(2-x)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=g(x)-1,若關(guān)于x的方程f(x)-lo
g
(x+2)
a
=0(a>1)在區(qū)間(-2,6]內(nèi)恰有三個(gè)不同實(shí)根,則實(shí)數(shù)a的取值范圍是
(
34
,2)
(
34
,2)
分析:(1)根據(jù)題意,由反函數(shù)的定義以及對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)可得g(x)=(
1
2
x=2-x,進(jìn)而結(jié)合題意可得2-(a+b)=2,即a+b=-1,對(duì)
4
a
+
1
b
變形可得其等于-[5+
4b
a
+
a
b
],由基本不等式的性質(zhì)可得
4b
a
+
a
b
≥4,代入
4
a
+
1
b
=-[5+
4b
a
+
a
b
]可得其最大值,即可得答案.
(2)根據(jù)題意,分析可得函數(shù)f(x)是一個(gè)周期函數(shù),且周期為4,將方程f(x)-logax+2=0恰有3個(gè)不同的實(shí)數(shù)解,轉(zhuǎn)化為函數(shù)f(x)的與函數(shù)y=-logax+2的圖象恰有3個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可得到實(shí)數(shù)a的取值范圍.
解答:解:(1)根據(jù)題意,g(x)=(
1
2
x=2-x,
若g(a)g(b)=2,則有2-(a+b)=2,即a+b=-1,
4
a
+
1
b
=-[(-a)+(-b)][
4
-a
+
1
-b
]=-[5+
4b
a
+
a
b
],
又由a<0,b<0,則
4b
a
>0且
a
b
>0,故
4b
a
+
a
b
≥4,
4
a
+
1
b
=-[5+
4b
a
+
a
b
]≤-9,
4
a
+
1
b
的最大值為-9;
(2)對(duì)于任意的x∈R,都有f(x-2)=f(2+x),∴函數(shù)f(x)是一個(gè)周期函數(shù),且T=4.
又∵當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
x-1,且函數(shù)f(x)是定義在R上的偶函數(shù),
若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有3個(gè)不同的實(shí)數(shù)解,
則函數(shù)y=f(x)與y=-loga(x+2)在區(qū)間(-2,6]上有三個(gè)不同的交點(diǎn),
又f(-2)=f(2)=3,分析可得有 loga4<3,且loga8>3,解得:
34
<a<2,
則a的取值范圍是(
34
,2)
故答案為(1):-9;(
34
,2).
點(diǎn)評(píng):本題考查指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象與性質(zhì),以及基本不等式的應(yīng)用,(1)的關(guān)鍵是根據(jù)題意,求出g(x)的解析式,其次要注意題意中a<0,b<0的條件,要配湊基本不等式成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案