【題目】若對于曲線上任意點處的切線,總存在上處的切線,使得,則實數(shù)的取值范圍是__________.
【答案】
【解析】f(x)=﹣ex﹣x的導(dǎo)數(shù)為f′(x)=﹣ex﹣1,
設(shè)(x1,y1)為f(x)上的任一點,
則過(x1,y1)處的切線l1的斜率為k1=﹣ex1﹣1,
g(x)=2ax+sinx的導(dǎo)數(shù)為g′(x)=2a+cosx,
過g(x)圖象上一點(x2,y2)處的切線l2的斜率為k2=2a+cosx2.
由l1⊥l2,可得(﹣ex1﹣1)(2a+cosx2)=﹣1,
即2a+cosx2=,
任意的x1∈R,總存在x2∈R使等式成立.
則有y1=2a+cosx2的值域為A=[2a﹣1,2a+1].
y2=的值域為B=(0,1),
有BA,即(0,1)[2a﹣1,2a+1].
即,
解得0≤a≤.
故答案為:[0, ].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:,點在x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標(biāo)原點.
若,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準(zhǔn)線相切;
是否存在定點M,使得不論直線l繞點M如何轉(zhuǎn)動,恒為定值?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是不重合直線,是不重合平面,則下列命題
①若,則∥
②若∥∥,則∥
③若∥、∥,則∥
④若,則∥
⑤若,則∥
為假命題的是
A. ①②③ B. ①②⑤ C. ③④⑤ D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體中,,,,分別是,,,的中點.
(Ⅰ)求證:,,,四點共面;
(Ⅱ)求證:平面∥平面;
(Ⅲ)畫出平面與正方體側(cè)面的交線(需要有必要的作圖說明、保留作圖痕跡).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的定義域;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明;
(3)若在區(qū)間上恒取正值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.
(1)求和的表達(dá)式,并求函數(shù)的值域
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“荊、荊、襄、宜七校聯(lián)考”正在如期開展,組委會為了解各所學(xué)校學(xué)生的學(xué)情,欲從四地選取200人作樣本開展調(diào)研.若來自荊州地區(qū)的考生有1000人,荊門地區(qū)的考生有2000人,襄陽地區(qū)的考生有3000人,宜昌地區(qū)的考生有2000人.為保證調(diào)研結(jié)果相對準(zhǔn)確,下列判斷正確的有( 。
①用分層抽樣的方法分別抽取荊州地區(qū)學(xué)生25人、荊門地區(qū)學(xué)生50人、襄陽地區(qū)學(xué)生75人、宜昌地區(qū)學(xué)生50人;
②可采用簡單隨機抽樣的方法從所有考生中選出200人開展調(diào)研;
③宜昌地區(qū)學(xué)生小劉被選中的概率為;
④襄陽地區(qū)學(xué)生小張被選中的概率為.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號為01,02,03,,49,50的50個個體組成,利用隨機數(shù)表(以下選取了隨機數(shù)表中的第1行和第2行)選取5個個體,選取方法是從隨機數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個個體的編號為( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com